Least-squares approximation of FIR by IIR digital filters

被引:63
作者
Brandenstein, H [1 ]
Unbehauen, R [1 ]
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Allgemeine & Theoret Elektrotech, D-8520 Erlangen, Germany
关键词
D O I
10.1109/78.651163
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an algorithm is presented for the least-squares approximation of FIR filters by IIR filters. The algorithm is an iterative procedure where each iteration requires the solution of an overdetermined set of linear equations and some digital filtering operations. All calculations are performed with the numerator and denominator coefficients of the transfer functions. A conversion to state-space descriptions is not necessary. Examples show that the approximation error is as small as that of the IIR filters obtained with balanced model reduction. Moreover, the effects of numerical errors are negligible. Thus, our algorithm is applicable even in cases where the FIR filter length is large.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 10 条
[1]   APPROXIMATION OF FIR BY IIR DIGITAL-FILTERS - AN ALGORITHM BASED ON BALANCED MODEL-REDUCTION [J].
BELICZYNSKI, B ;
KALE, I ;
CAIN, GD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (03) :532-542
[2]   DESIGN OF LINEAR-PHASE IIR FILTERS FROM FIR SPECIFICATIONS [J].
FAHMY, MF ;
YASSIN, YM ;
ABDELRAHEEM, G ;
ELGAYED, N .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (02) :437-440
[3]   ON APPROXIMATING AN FIR FILTER USING DISCRETE ORTHONORMAL EXPONENTIALS [J].
FRIEDMAN, DH .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1981, 29 (04) :923-926
[4]  
GANTMACHER FR, 1965, MATRIZENRECHNUNG, V1
[5]   OPTIMAL HANKEL-NORM MODEL REDUCTIONS - MULTIVARIABLE SYSTEMS [J].
KUNG, SY ;
LIN, DW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (04) :832-852
[6]   COMPUTER-PROGRAM FOR DESIGNING OPTIMUM FIR LINEAR PHASE DIGITAL FILTERS [J].
MCCLELLAN, JH ;
PARKS, TW ;
RABINER, LR .
IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1973, AU21 (06) :506-526
[7]  
SALEH AI, 1983, P EUR C CIRC THEOR D, P352
[8]   AN ALTERNATIVE PROOF FOR THE STABILITY OF LEAST-SQUARES INVERSE POLYNOMIALS [J].
SCHMEISSER, G ;
RAGHURAMIREDDY, D ;
UNBEHAUEN, R .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (08) :822-824
[9]   DESIGN OF LINEAR-PHASE IIR FILTERS VIA IMPULSE-RESPONSE GRAMIANS [J].
SREERAM, V ;
AGATHOKLIS, P .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (02) :389-394
[10]  
Walsh J.L., 1965, INTERPOLATION APPROX