On inequalities involving polar derivative of a polynomial

被引:19
作者
Govil, N. K. [1 ]
Kumar, P. [2 ,3 ]
机构
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
[2] Birla Inst Technol & Sci Pilani, Dept Math, KK Birla Goa Campus, Sancoale 403726, Goa, India
[3] Auburn Univ, Auburn, AL 36849 USA
关键词
polynomial; zero; L-p inequality;
D O I
10.1007/s10474-017-0693-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if P(z) is a polynomial of degree n with zeros z (m) , that satisfy , , then for any p > 0, and for every complex number alpha, with , we have where , and if , and t (0) = 1 if K (m) = 1 for some m, . Our results generalize and sharpen several of the known results.
引用
收藏
页码:130 / 139
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 2008, J INEQ PURE APPL MAT
[2]  
[Anonymous], 1947, NEDERL AKAD WETENSCH
[3]  
Arestov V. V., 1981, Izv. Akad. Nauk. SSSR. Ser. Math., V45, P3
[4]   INEQUALITIES FOR THE POLAR DERIVATIVE OF A POLYNOMIAL [J].
AZIZ, A .
JOURNAL OF APPROXIMATION THEORY, 1988, 55 (02) :183-193
[5]   Some Zygmund type Lq inequalities for polynomials [J].
Aziz, A ;
Rather, NA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (01) :14-29
[6]  
Bernstein S. N., 1926, Lecons sur les proprietes extremal es et la meilleure approximation des fonctions analytiques d'une variable reele
[7]   AN L(P) INEQUALITY FOR A POLYNOMIAL AND ITS DERIVATIVE [J].
GARDNER, RB ;
GOVIL, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 194 (03) :720-726
[8]   INEQUALITIES CONCERNING THE L(P) NORM OF A POLYNOMIAL AND ITS DERIVATIVE [J].
GARDNER, RB ;
GOVIL, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (01) :208-213
[9]   FUNCTIONS OF EXPONENTIAL TYPE NOT VANISHING IN A HALF-PLANE AND RELATED POLYNOMIALS [J].
GOVIL, NK ;
RAHMAN, QI .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 137 (MAR) :501-&
[10]   Some LP inequalities for the polar derivative of a polynomial [J].
Govil, NK ;
Nyuydinkong, G ;
Tameru, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 254 (02) :618-626