Multicomponent reactive transport in multicontinuum media

被引:62
作者
David Donado, Leonardo [1 ,2 ]
Sanchez-Vila, Xavier [1 ]
Dentz, Marco [3 ]
Carrera, Jesus [3 ]
Bolster, Diogo [1 ]
机构
[1] Tech Univ Catalonia, Hydrogeol Grp, Dept Geotech Engn & Geosci, E-08034 Barcelona, Spain
[2] Univ Nacl Colombia, Sch Engn, Bogota, Colombia
[3] CSIC, IDAEA, Inst Environm Assessment & Water Res, E-08034 Barcelona, Spain
关键词
MULTIRATE MASS-TRANSFER; MULTISPECIES TRANSPORT; SOLUTE TRANSPORT; POROUS-MEDIA; EFFECTIVE PARAMETERS; GENERALIZED SOLUTION; BREAKTHROUGH CURVES; MATRIX DIFFUSION; BEHAVIOR; MODELS;
D O I
10.1029/2008WR006823
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Multicomponent reactive transport in aquifers is a highly complex process, owing to a combination of variability in the processes involved and the inherent heterogeneity of nature. To date, the most common approach is to model reactive transport by incorporating reaction terms into advection-dispersion equations (ADEs). Over the last several years, a large body of literature has emerged criticizing the validity of the ADE for transport in real media, and alternative models have been presented. One such approach is that of multirate mass transfer (MRMT). In this work, we propose a model that introduces reactive terms into the MRMT governing equations for conservative species. This model conceptualizes the medium as a multiple continuum of one mobile region and multiple immobile regions, which are related by kinetic mass transfer processes. Reactants in both the mobile and immobile regions are assumed to always be in chemical equilibrium. However, the combination of local dispersion in the mobile region and the various mass transfer rates induce a global chemical nonequilibrium. Assuming this model properly accounts for transport of reactive species, we derive explicit expressions for the reaction rates in the mobile and immobile regions, and we study the impact of mass transfer on reactive transport. Within this framework, we observe that the resulting reaction rates can be very different from those that arise in a system governed by an ADE-type equation.
引用
收藏
页数:11
相关论文
共 48 条
[41]   Propagation of nonlinear reactive contaminants in porous media [J].
Serrano, SE .
WATER RESOURCES RESEARCH, 2003, 39 (08) :SBH131-SBH1314
[42]   Development of analytical solutions for multispecies transport with serial and parallel reactions [J].
Sun, Y ;
Petersen, JN ;
Clement, TP ;
Skeen, RS .
WATER RESOURCES RESEARCH, 1999, 35 (01) :185-190
[43]   An analytical solution of tetrachloroethylene transport and biodegradation [J].
Sun, YW ;
Lu, XJ ;
Petersen, JN ;
Buscheck, TA .
TRANSPORT IN POROUS MEDIA, 2004, 55 (03) :301-308
[44]   A general approach to advective-dispersive transport with multirate mass transfer [J].
Wang, PP ;
Zheng, CM ;
Gorelick, SM .
ADVANCES IN WATER RESOURCES, 2005, 28 (01) :33-42
[45]   A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments [J].
Wang, YF ;
VanCappellen, P .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1996, 60 (16) :2993-3014
[46]   Enhanced mixing and reaction through flow focusing in heterogeneous porous media [J].
Werth, Charles J. ;
Cirpka, Olaf A. ;
Grathwohl, Peter .
WATER RESOURCES RESEARCH, 2006, 42 (12)
[47]   Transport upscaling in heterogeneous aquifers: What physical parameters control memory functions? [J].
Willmann, M. ;
Carrera, J. ;
Sanchez-Vila, X. .
WATER RESOURCES RESEARCH, 2008, 44 (12)
[48]   INTRAGRANULAR DIFFUSION - AN IMPORTANT MECHANISM INFLUENCING SOLUTE TRANSPORT IN CLASTIC AQUIFERS [J].
WOOD, WW ;
KRAEMER, TF ;
HEARN, PP .
SCIENCE, 1990, 247 (4950) :1569-1572