Diagnosis of Acute Leukemia by Multiparameter Flow Cytometry with the Assistance of Artificial Intelligence

被引:8
作者
Zhong, Pengqiang [1 ]
Hong, Mengzhi [1 ]
He, Huanyu [2 ]
Zhang, Jiang [1 ]
Chen, Yaoming [1 ]
Wang, Zhigang [2 ]
Chen, Peisong [1 ]
Ouyang, Juan [1 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Lab Med, Guangzhou 510080, Peoples R China
[2] Deepcyto LLC, 2304 Falcon Dr, West Linn, OR 97068 USA
关键词
artificial intelligence; acute leukemia; multiparameter flow cytometry;
D O I
10.3390/diagnostics12040827
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We developed an artificial intelligence (AI) model that evaluates the feasibility of AI-assisted multiparameter flow cytometry (MFC) diagnosis of acute leukemia. Two hundred acute leukemia patients and 94 patients with cytopenia(s) or hematocytosis were selected to study the AI application in MFC diagnosis of acute leukemia. The kappa test analyzed the consistency of the diagnostic results and the immunophenotype of acute leukemia. Bland-Altman and Pearson analyses evaluated the consistency and correlation of the abnormal cell proportion between the AI and manual methods. The AI analysis time for each case (83.72 +/- 23.90 s, mean +/- SD) was significantly shorter than the average time for manual analysis (15.64 +/- 7.16 min, mean +/- SD). The total consistency of diagnostic results was 0.976 (kappa (kappa) = 0.963). The Bland-Altman evaluation of the abnormal cell proportion between the AI analysis and manual analysis showed that the bias +/- SD was 0.752 +/- 6.646, and the 95% limit of agreement was from -12.775 to 13.779 (p = 0.1225). The total consistency of the AI immunophenotypic diagnosis and the manual results was 0.889 (kappa, 0.775). The consistency and speedup of the AI-assisted workflow indicate its promising clinical application.
引用
收藏
页数:13
相关论文
共 25 条
[1]   Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets [J].
Belkina, Anna C. ;
Ciccolella, Christopher O. ;
Anno, Rina ;
Halpert, Richard ;
Spidlen, Josef ;
Snyder-Cappione, Jennifer E. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Leukemia diagnosis: today and tomorrow [J].
Bene, Marie C. ;
Grimwade, David ;
Haferlach, Claudia ;
Haferlach, Torsten ;
Zini, Gina .
EUROPEAN JOURNAL OF HAEMATOLOGY, 2015, 95 (04) :365-373
[3]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[4]   12th GCC Closed Forum: critical reagents; oligonucleotides; CoA; method transfer; HRMS; flow cytometry; regulatory findings; stability and immunogenicity [J].
Briscoe, Chad ;
Hughes, Nicola ;
Hayes, Roger ;
Islam, Rafiq ;
Bennett, Patrick ;
Stouffer, Bruce ;
Cape, Stephanie ;
Rhyne, Paul ;
Beaver, Chris ;
St Charles, Jessica ;
Kakkanaiah, Vellalore ;
Xu, Allan ;
Caturla, Maria Cruz ;
Spriggs, Franklin ;
Tayyem, Rabab ;
Barry, Colin ;
Keyhani, Anahita ;
Zimmer, Jennifer ;
Couerbe, Philippe ;
Warren, Mark ;
Khadang, Ardeshir ;
Bourdage, James ;
Lindley, Kathie ;
Williams, Dave ;
Sheldon, Curtis ;
Satterwhite, Christina ;
Vija, Jenifer ;
Yu, Mathilde ;
Boulay, Iohann ;
Stamatopoulos, John ;
Lin, Jenny ;
Estdale, Sian ;
Thomas, Eric ;
Dinan, Andrew ;
MacNeill, Robert ;
Xiao, Yi Qun ;
Matassa, Luca ;
Garofolo, Wei ;
Savoie, Natasha ;
Hristopoulos, George ;
Xu, Arron ;
Goodwin, Lawrence ;
Awaiye, Kayode ;
Ritzen, Hanna ;
Bouhajib, Mohammed ;
Marco, Chantal Di ;
Savu, Simona Rizea ;
Nehls, Corey ;
Tabler, Edward ;
Hays, Amanda .
BIOANALYSIS, 2019, 11 (12) :1129-1138
[5]   Flow cytometric assays for identity, safety and potency of cellular therapies [J].
Campbell, John D. M. ;
Fraser, Alasdair R. .
CYTOMETRY PART B-CLINICAL CYTOMETRY, 2018, 94 (05) :569-579
[6]   Toward a Generalized and High-throughput Enzyme Screening System Based on Artificial Genetic Circuits [J].
Choi, Su-Lim ;
Rha, Eugene ;
Lee, Sang Jun ;
Kim, Haseong ;
Kwon, Kilkoang ;
Jeong, Young-Su ;
Rhee, Young Ha ;
Song, Jae Jun ;
Kim, Hak-Sung ;
Lee, Seung-Goo .
ACS SYNTHETIC BIOLOGY, 2014, 3 (03) :163-171
[7]   Applications and efficiency of flow cytometry for leukemia diagnostics [J].
Del Principe, Maria Ilaria ;
De Bellis, Eleonora ;
Gurnari, Carmelo ;
Buzzati, Elisa ;
Savi, Arianna ;
Consalvo, Maria Antonietta Irno ;
Venditti, Adriano .
EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2019, 19 (12) :1089-1097
[8]   PhenoGraph and viSNE facilitate the identification of abnormal T-cell populations in routine clinical flow cytometric data [J].
DiGiuseppe, Joseph A. ;
Cardinali, Jolene L. ;
Rezuke, William N. ;
Pe'er, Dana .
CYTOMETRY PART B-CLINICAL CYTOMETRY, 2018, 94 (05) :588-601
[9]   Reversible Logic Gates Based on Enzyme-Biocatalyzed Reactions and Realized in Flow Cells: A Modular Approach [J].
Fratto, Brian E. ;
Katz, Evgeny .
CHEMPHYSCHEM, 2015, 16 (07) :1405-1415
[10]   In Flow Cytometry, Image Is Everything [J].
Goda, Keisuke ;
Filby, Andrew ;
Nitta, Nao .
CYTOMETRY PART A, 2019, 95A (05) :475-477