AN IMMERSED CROUZEIX-RAVIART FINITE ELEMENT METHOD FOR NAVIER-STOKES EQUATIONS WITH MOVING INTERFACES

被引:0
|
作者
Wang, Jin [1 ]
Zhang, Xu [2 ]
Zhuang, Qiao [3 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[3] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes; interface problems; nonconforming immersed finite element methods; moving interface; DISCONTINUOUS GALERKIN METHODS; MATCHED INTERFACE; SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we develop a Cartesian-mesh finite element method for solving NavierStokes interface problems with moving interfaces. The spatial discretization uses the immersed Crouzeix-Raviart nonconforming finite element introduced in [29]. A backward Euler full-discrete scheme is developed which embeds Newton's iteration to treat the nonlinear convective term. The proposed IFE method does not require any stabilization terms while maintaining its convergence in optimal order. Numerical experiments with various interface shapes and jump coefficients are provided to demonstrate the accuracy of the proposed method. The numerical results are compared to the analytical solution as well as the standard finite element method with body fitting meshes. Numerical results indicate the optimal order of convergence of the IFE method.
引用
收藏
页码:563 / 586
页数:24
相关论文
共 50 条
  • [21] The finite volume method based on the Crouzeix-Raviart element for a fracture model
    Chen, Shuangshuang
    Li, Xiaoli
    Rui, Hongxing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (05) : 1904 - 1927
  • [22] The mortar finite volume method with the Crouzeix-Raviart element for elliptic problems
    Bi, CJ
    Li, LK
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (1-2) : 15 - 31
  • [23] Instance optimal Crouzeix-Raviart adaptive finite element methods for the Poisson and Stokes problems
    Kreuzer, Christian
    Schedensack, Mira
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) : 593 - 617
  • [24] Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem
    Burman, E
    Hansbo, P
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (05) : 986 - 997
  • [25] A general quadratic enrichment of the Crouzeix-Raviart finite element
    Nudo, Federico
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [26] A QUASI-OPTIMAL CROUZEIX-RAVIART DISCRETIZATION OF THE STOKES EQUATIONS
    Verfuerth, Ruediger
    Zanotti, Pietro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1082 - 1099
  • [27] A Parallel Preconditioner for a FETI-DP Method for the Crouzeix-Raviart Finite Element
    Marcinkowski, Leszek
    Rahman, Talal
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 697 - 705
  • [28] Superconvergent Cluster Recovery Method for the Crouzeix-Raviart Element
    Zhang, Yidan
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02): : 508 - 526
  • [29] A 3D Crouzeix-Raviart mortar finite element
    Leszek Marcinkowski
    Talal Rahman
    Jan Valdman
    Computing, 2009, 86 : 313 - 330
  • [30] On an additive Schwarz preconditioner for the Crouzeix-Raviart mortar finite element
    Rahman, T
    Xu, XJ
    Hoppe, RHW
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 335 - 342