On the critical Neumann problem with weight in exterior domains

被引:9
作者
Chabrowski, J
Ruf, B
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[2] Univ Queensland, Dept Math, St Lucia, Qld 4072, Australia
关键词
Neumann problem; exterior domains; critical Sobolev exponent; least energy solutions; optimal Sobolev inequalities;
D O I
10.1016/S0362-546X(03)00059-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent in exterior domains. It is assumed that the coefficient Q is a positive and smooth function on Omega(c) and lambda > 0 is a parameter. We examine the common effect of the mean curvature of the boundary partial derivativeOmega and the shape of the graph of the coefficient Q on the existence of least energy solutions. Crown Copyright (C) 2003 Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:143 / 163
页数:21
相关论文
共 28 条
[1]  
ADIMURTHI F, 1995, DIFFERENTIAL INTEGRA, V8, P31
[2]  
ADIMURTHI G, 1995, COMMUN PART DIFF EQ, V20, P591
[3]  
ADIMURTHI G, 1991, SC NORM SUPER PISA Q, P00009
[4]  
ADIMURTHI SL, 1990, P INDIAN ACAD SCI, V100, P275
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]   Least energy solutions of a critical Neumann problem with a weight [J].
Chabrowski, J ;
Willem, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 15 (04) :421-431
[7]  
Chabrowski J, 2002, B UNIONE MAT ITAL, V5B, P715
[8]  
CHABROWSKI J, 2002, B POL ACAD SCI, V50
[10]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF