One-dimensional percolation models of transient phenomena

被引:3
|
作者
Macpherson, KP
MacKinnon, AL
机构
[1] UNIV GLASGOW,DEPT PHYS & ASTRON,GLASGOW G12 8QQ,LANARK,SCOTLAND
[2] UNIV GLASGOW,DEPT ADULT & CONTINUING EDUC,GLASGOW G12 8QQ,LANARK,SCOTLAND
来源
PHYSICA A | 1997年 / 243卷 / 1-2期
关键词
percolation models; self-organised criticality; solar flares;
D O I
10.1016/S0378-4371(97)00189-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We recall a cellular automaton model first developed for studying solar Rare occurrence and investigate its parallels with percolation theory. We further develop the model by relaxing the assumptions of the original model concerning timescales of re-growth to allow investigation of percolation models with 're-ignition'.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Ergodicity and Percolation for Variants of One-dimensional Voter Models
    Mohylevskyy, Y.
    Newman, C. M.
    Ravishankar, K.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 485 - 504
  • [2] Transient phenomena in one-dimensional compressible gas–particle flows
    Y. Ling
    A. Haselbacher
    S. Balachandar
    Shock Waves, 2009, 19 : 67 - 81
  • [3] QUANTUM VERSUS CLASSICAL POLARIZABILITY IN ONE-DIMENSIONAL PERCOLATION MODELS
    NGUYEN, D
    ODAGAKI, T
    PHYSICAL REVIEW B, 1986, 33 (09): : 6549 - 6551
  • [4] Oriented Percolation in One-dimensional 1/|x-y|2 Percolation Models
    Marchetti, D. H. U.
    Sidoravicius, V.
    Vares, M. E.
    JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (06) : 941 - 959
  • [5] Transient phenomena in one-dimensional compressible gas-particle flows
    Ling, Y.
    Haselbacher, A.
    Balachandar, S.
    SHOCK WAVES, 2009, 19 (01) : 67 - 81
  • [6] CONDITIONAL PERCOLATION ON ONE-DIMENSIONAL LATTICES
    Axelson-Fisk, Marina
    Haggstrom, Olle
    ADVANCES IN APPLIED PROBABILITY, 2009, 41 (04) : 1102 - 1122
  • [7] A function arising in one-dimensional percolation
    Boersma, J
    SIAM REVIEW, 1996, 38 (04) : 671 - 675
  • [8] DISCONTINUITY OF THE PERCOLATION DENSITY IN ONE-DIMENSIONAL 1[X-Y]2 PERCOLATION MODELS
    AIZENMAN, M
    NEWMAN, CM
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (04) : 611 - 647
  • [9] LATTICE DECORATIONS AND ONE-DIMENSIONAL PERCOLATION
    ORD, G
    WHITTINGTON, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (15): : L947 - L950
  • [10] One-dimensional transient crystals
    Kwapinski, T.
    PHYSICAL REVIEW B, 2023, 107 (03)