Engineering fidelity echoes in Bose-Hubbard Hamiltonians

被引:12
作者
Bodyfelt, J. D.
Hiller, M.
Kottos, T.
机构
[1] Wesleyan Univ, Dept Phys, Middletown, CT 06459 USA
[2] MPI Dynam & Self Organizat, D-37073 Gottingen, Germany
[3] Univ Gottingen, Fak Phys, D-37077 Gottingen, Germany
关键词
D O I
10.1209/0295-5075/78/50003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the fidelity decay for a system of interacting bosons described by a Bose-Hubbard Hamiltonian. We find echoes associated with "non-universal" structures that dominate the energy landscape of the perturbation operator. Despite their classical origin, these echoes persist deep into the quantum (perturbative) regime and can be described by an improved random matrix modeling. In the opposite limit of strong perturbations (and high enough energies), classical considerations reveal the importance of self-trapping phenomena in the echo efficiency. Copyright (C) EPLA, 2007.
引用
收藏
页数:6
相关论文
共 46 条
[1]   Decay of quantum correlations in atom optics billiards with chaotic and mixed dynamics [J].
Andersen, M. F. ;
Kaplan, A. ;
Grunzweig, T. ;
Davidson, N. .
PHYSICAL REVIEW LETTERS, 2006, 97 (10)
[2]   Echo spectroscopy and quantum stability of trapped atoms [J].
Andersen, MF ;
Kaplan, A ;
Davidson, N .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[3]   Revivals of coherence in chaotic atom-optics billiards -: art. no. 063413 [J].
Andersen, MF ;
Grünzweig, T ;
Kaplan, A ;
Davidson, N .
PHYSICAL REVIEW A, 2004, 69 (06) :063413-1
[4]   Quantum-classical correspondence in perturbed chaotic systems [J].
Benenti, G ;
Casati, G .
PHYSICAL REVIEW E, 2002, 65 (06)
[5]   Observation of breathers in Josephson ladders [J].
Binder, P ;
Abraimov, D ;
Ustinov, AV ;
Flach, S ;
Zolotaryuk, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (04) :745-748
[6]   Nearest-neighbour level spacings for the non-periodic discrete nonlinear Schrodinger equation [J].
Chefles, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (15) :4515-4526
[7]   Parametric dependent Hamiltonians, wave functions, random matrix theory, and quantal-classical correspondence [J].
Cohen, D ;
Kottos, T .
PHYSICAL REVIEW E, 2001, 63 (03)
[8]  
CUCCHIETTI F, 2006, QUANTPH0609202
[9]   Measuring the Lyapunov exponent using quantum mechanics [J].
Cucchietti, F.M. ;
Lewenkopf, C.H. ;
Mucciolo, E.R. ;
Pastawski, H.M. ;
Vallejos, R.O. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04) :1-046209
[10]  
De Filippo S, 1989, NONLINEARITY, V2, P477, DOI 10.1088/0951-7715/2/3/007