On the Laplacian spectral radius of bipartite graphs with fixed order and size

被引:13
作者
Zhang, Huihui [1 ]
Li, Shuchao [2 ]
机构
[1] Luoyang Normal Univ, Dept Math, Luoyang 471002, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplacian spectral radius; Largest eigenvalue; Double nested graphs; Bipartite graphs; LEAST EIGENVALUE; N-VERTICES; RESPECT; BOUNDS; TREES;
D O I
10.1016/j.dam.2017.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g(n,m) be the set of all connected bipartite graphs of order n and size m. In this paper, the problem on maximum Laplacian spectral radius of graphs in g(n,m) is considered. Among g(n,m) with n <= m <= 2n - 5, the largest Laplacian spectral radius of graphs is determined. As well the upper bound on Laplacian spectral radius of graphs among g(n,l(n-l)) with 2 <= l <= [n/2] is determined. All the corresponding extremal graphs are characterized, respectively. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 30 条
[1]   On bounds for the index of double nested graphs [J].
Andelic, M. ;
da Fonseca, C. M. ;
Simic, S. K. ;
Tosic, D. V. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) :2475-2490
[2]  
Andelic M, 2013, ARS MATH CONTEMP, V6, P154
[3]  
[Anonymous], 1997, C BOARD MATH SCI
[4]  
[Anonymous], J CHINA U SCI TECHNO
[5]   Graphs for which the least eigenvalue is minimal, II [J].
Bell, Francis K. ;
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) :2168-2179
[6]   Graphs for which the least eigenvalue is minimal, I [J].
Bell, Francis K. ;
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (01) :234-241
[7]  
Bhattacharya A, 2008, ELECTRON J COMB, V15
[8]   Spectra of digraphs [J].
Brualdi, Richard A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2181-2213
[9]  
Cvetkovic D., 2010, An Introduction to the Theory of Graph Spectra
[10]   EIGENVALUE BOUNDS FOR THE SIGNLESS LAPLACIAN [J].
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2007, 81 (95) :11-27