On the Prediction of Atmospheric Corrosion of Metals and Alloys in Chile Using Artificial Neural Networks

被引:0
作者
Vera, Rosa [1 ]
Ossandon, Sebastian [2 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Fac Ciencias, Inst Quim, Valparaiso, Chile
[2] Pontificia Univ Catolica Valparaiso, Fac Ciencias, Inst Matemat, Valparaiso, Chile
关键词
Atmospheric corrosion; weight loss; artificial neural networks; carbon steel; galvanised steel; copper; aluminium; POWER ELECTRICAL CONDUCTORS; MARINE; STEEL; POLLUTANTS;
D O I
暂无
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Most metals and alloys exposed to the environment suffer deterioration due to the effects of atmospheric corrosion. This study presents results obtained for the corrosion of carbon steel, galvanised steel, copper and aluminium exposed to the environment for a period of 3 years, at 9 different sites around Chile. Mathematical models based on artificial neural networks are used to evaluate the corrosion of the metals and alloys as a function of meteorological variables (relative humidity, temperature and amount of rainfall), pollutants (chloride and sulphur dioxide) and time. The advantages of these models in predicting corrosion is also shown in comparison to traditional statistical regression models when considering the dependence of corrosion as a function of time alone.
引用
收藏
页码:7131 / 7151
页数:21
相关论文
共 50 条
[41]   Building Energy Prediction using Artificial Neural Networks (LSTM) [J].
Goswami, Sankhanil .
PROCEEDINGS OF THE ASME 2020 POWER CONFERENCE (POWER2020), 2020,
[42]   Freeze prediction for specific locations using artificial neural networks [J].
Jain, A. ;
McClendon, R. W. ;
Hoogenboom, G. .
TRANSACTIONS OF THE ASABE, 2006, 49 (06) :1955-1962
[43]   PREDICTION OF ASPHALT CREEP COMPLIANCE USING ARTIFICIAL NEURAL NETWORKS [J].
Zofka, A. ;
Yut, I. .
ARCHIVES OF CIVIL ENGINEERING, 2012, 58 (02) :153-173
[44]   Wavefront prediction using artificial neural networks with CANARY telemetry [J].
Liu, Xuewen ;
Morris, Tim ;
Bardou, Lisa .
ADAPTIVE OPTICS SYSTEMS VII, 2020, 11448
[45]   Prediction of problematic wine fermentations using artificial neural networks [J].
Cesar Roman, R. ;
Gonzalo Hernandez, O. ;
Alejandra Urtubia, U. .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2011, 34 (09) :1057-1065
[46]   Prediction of primary water stress corrosion crack growth rates in Alloy 600 using artificial neural networks [J].
Shi, Jiangbo ;
Wang, Jihui ;
Macdonald, Digby D. .
CORROSION SCIENCE, 2015, 92 :217-227
[47]   Nyquist Plots Prediction Using Neural Networks in Corrosion Inhibition of Steel by Schiff Base [J].
Akbarzade, Kazem ;
Danaee, Imam .
IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2018, 37 (03) :135-143
[48]   Prediction of the Thickness of a Boroaluminized Layer Using an Artificial Neural Network [J].
Mishigdorzhiyn, U. L. ;
Dyshenov, B. A. ;
Semenov, A. P. ;
Ulakhanov, N. S. ;
Markhadayev, B. E. .
JOURNAL OF SURFACE INVESTIGATION, 2024, 18 (02) :466-473
[49]   Riverflow Prediction with Artificial Neural Networks [J].
Jayawardena, A. W. .
ENGINEERING APPLICATIONS OF NEURAL NETWORKS, PROCEEDINGS, 2009, 43 :463-471
[50]   Allergenicity prediction by artificial neural networks [J].
Dimitrov, Ivan ;
Naneva, Lyudmila ;
Bangov, Ivan ;
Doytchinova, Irini .
JOURNAL OF CHEMOMETRICS, 2014, 28 (04) :282-286