On the Prediction of Atmospheric Corrosion of Metals and Alloys in Chile Using Artificial Neural Networks

被引:0
作者
Vera, Rosa [1 ]
Ossandon, Sebastian [2 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Fac Ciencias, Inst Quim, Valparaiso, Chile
[2] Pontificia Univ Catolica Valparaiso, Fac Ciencias, Inst Matemat, Valparaiso, Chile
关键词
Atmospheric corrosion; weight loss; artificial neural networks; carbon steel; galvanised steel; copper; aluminium; POWER ELECTRICAL CONDUCTORS; MARINE; STEEL; POLLUTANTS;
D O I
暂无
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Most metals and alloys exposed to the environment suffer deterioration due to the effects of atmospheric corrosion. This study presents results obtained for the corrosion of carbon steel, galvanised steel, copper and aluminium exposed to the environment for a period of 3 years, at 9 different sites around Chile. Mathematical models based on artificial neural networks are used to evaluate the corrosion of the metals and alloys as a function of meteorological variables (relative humidity, temperature and amount of rainfall), pollutants (chloride and sulphur dioxide) and time. The advantages of these models in predicting corrosion is also shown in comparison to traditional statistical regression models when considering the dependence of corrosion as a function of time alone.
引用
收藏
页码:7131 / 7151
页数:21
相关论文
共 50 条
[31]   Prediction of the Dynamic Properties of Concrete Using Artificial Neural Networks [J].
Yasin, Amjad A. .
CIVIL ENGINEERING JOURNAL-TEHRAN, 2024, 10 (01) :249-264
[32]   PREDICTION OF THE OPTIMUM ASPHALT CONTENT USING ARTIFICIAL NEURAL NETWORKS [J].
Othman, Kareem ;
Abdelwahab, Hassan .
METALLURGICAL & MATERIALS ENGINEERING, 2021, 27 (02) :227-242
[33]   Newspaper Vendor Sales Prediction using Artificial Neural Networks [J].
Fakharudin, Abdul Sahli ;
Hamza, Mohd Azwan Mohamad ;
Johan, Mohd Usaid .
2009 INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY AND COMPUTER, PROCEEDINGS, 2009, :339-343
[34]   A review of solar radiation prediction using artificial neural networks [J].
Marzouq, Manal ;
El Fadili, Hakim ;
Lakhliai, Zakia ;
Zenkouar, Khalid .
2017 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS), 2017,
[35]   Heart Disease Prediction Using Artificial Neural Networks: A Survey [J].
Peng, Chun-Chen ;
Huang, Chun-Wei ;
Lai, Yi-Chun .
PROCEEDINGS OF THE 2ND IEEE EURASIA CONFERENCE ON BIOMEDICAL ENGINEERING, HEALTHCARE AND SUSTAINABILITY 2020 (IEEE ECBIOS 2020): BIOMEDICAL ENGINEERING, HEALTHCARE AND SUSTAINABILITY, 2020, :147-150
[36]   Prediction of strength for concrete specimens using Artificial Neural Networks [J].
Kaveh, A ;
Khalegi, A .
ADVANCES IN ENGINEERING COMPUTATIONAL TECHNOLOGY, 1998, :165-171
[37]   Advances in ungauged streamflow prediction using artificial neural networks [J].
Besaw, Lance E. ;
Rizzo, Donna M. ;
Bierman, Paul R. ;
Hackett, William R. .
JOURNAL OF HYDROLOGY, 2010, 386 (1-4) :27-37
[38]   Voltage prediction of a photovoltaic module using artificial neural networks [J].
Askarzadeh, Alireza .
INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2014, 24 (12) :1715-1725
[39]   Prediction of problematic wine fermentations using artificial neural networks [J].
R. César Román ;
O. Gonzalo Hernández ;
U. Alejandra Urtubia .
Bioprocess and Biosystems Engineering, 2011, 34 :1057-1065
[40]   Prediction of Discharge in a Tidal River Using Artificial Neural Networks [J].
Hidayat, H. ;
Hoitink, A. J. F. ;
Sassi, M. G. ;
Torfs, P. J. J. F. .
JOURNAL OF HYDROLOGIC ENGINEERING, 2014, 19 (08)