On the Prediction of Atmospheric Corrosion of Metals and Alloys in Chile Using Artificial Neural Networks

被引:0
作者
Vera, Rosa [1 ]
Ossandon, Sebastian [2 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Fac Ciencias, Inst Quim, Valparaiso, Chile
[2] Pontificia Univ Catolica Valparaiso, Fac Ciencias, Inst Matemat, Valparaiso, Chile
关键词
Atmospheric corrosion; weight loss; artificial neural networks; carbon steel; galvanised steel; copper; aluminium; POWER ELECTRICAL CONDUCTORS; MARINE; STEEL; POLLUTANTS;
D O I
暂无
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Most metals and alloys exposed to the environment suffer deterioration due to the effects of atmospheric corrosion. This study presents results obtained for the corrosion of carbon steel, galvanised steel, copper and aluminium exposed to the environment for a period of 3 years, at 9 different sites around Chile. Mathematical models based on artificial neural networks are used to evaluate the corrosion of the metals and alloys as a function of meteorological variables (relative humidity, temperature and amount of rainfall), pollutants (chloride and sulphur dioxide) and time. The advantages of these models in predicting corrosion is also shown in comparison to traditional statistical regression models when considering the dependence of corrosion as a function of time alone.
引用
收藏
页码:7131 / 7151
页数:21
相关论文
共 50 条
[21]   DGPS correction prediction using artificial neural networks [J].
Mohasseb, M. ;
El-Rabbany, A. ;
El-Alim, O. Abd ;
Rashad, R. .
JOURNAL OF NAVIGATION, 2007, 60 (02) :291-301
[22]   Predicting Atmospheric Corrosion Rates of Copper in Taiwan Industrial Zones Using Artificial Neural Network [J].
Lo, C. M. ;
Chiu, Y. P. ;
Lin, M. D. .
2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2017, :1276-1280
[23]   Prediction of corrosion properties of LENS™ deposited cobalt, chromium and molybdenum alloy using artificial neural networks [J].
Shaik, Nagoor Basha ;
Mantrala, Kedar Mallik ;
Narayana, Kavuluru Lakshmi .
INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2021, 62 (1-3) :4-15
[24]   Predicting pipeline corrosion in heterogeneous soils using numerical modelling and artificial neural networks [J].
Azoor, Rukshan ;
Deo, Ravin ;
Shannon, Benjamin ;
Fu, Guoyang ;
Ji, Jian ;
Kodikara, Jayantha .
ACTA GEOTECHNICA, 2022, 17 (04) :1463-1476
[25]   Corrosion Behaviour Modelling Using Artificial Neural Networks: A Case Study in Biogas Environment [J].
Jimenez-Come, Maria Jesus ;
Gallero, Francisco Javier Gonzalez ;
Gomez, Pascual alvarez ;
Balades, Jesus Daniel Mena .
METALS, 2023, 13 (11)
[26]   Atmospheric controls on Puerto Rico precipitation using artificial neural networks [J].
Craig A. Ramseyer ;
Thomas L. Mote .
Climate Dynamics, 2016, 47 :2515-2526
[27]   Atmospheric controls on Puerto Rico precipitation using artificial neural networks [J].
Ramseyer, Craig A. ;
Mote, Thomas L. .
CLIMATE DYNAMICS, 2016, 47 (7-8) :2515-2526
[28]   Cardiovascular Diseases Prediction Using Artificial Neural Networks: A Survey [J].
Peng, Chun-Cheng ;
Lai, Yi-Chun ;
Huang, Chun-Wei ;
Wang, Jun-Gong ;
Wang, Shi-Hao ;
Wang, Yuan-Zhi .
PROCEEDINGS OF THE 2ND IEEE EURASIA CONFERENCE ON BIOMEDICAL ENGINEERING, HEALTHCARE AND SUSTAINABILITY 2020 (IEEE ECBIOS 2020): BIOMEDICAL ENGINEERING, HEALTHCARE AND SUSTAINABILITY, 2020, :141-144
[29]   Arctic Ice Thickness Prediction using Artificial Neural Networks [J].
Zaatar, Tarek ;
Cheaitou, Ali ;
Faury, Olivier .
2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, :274-278
[30]   Prediction of bradycardia in preterm infants using artificial neural networks [J].
Jiang, Haimin ;
Salmon, Brian P. ;
Gale, Timothy J. ;
Dargaville, Peter A. .
MACHINE LEARNING WITH APPLICATIONS, 2022, 10