On the Prediction of Atmospheric Corrosion of Metals and Alloys in Chile Using Artificial Neural Networks

被引:0
|
作者
Vera, Rosa [1 ]
Ossandon, Sebastian [2 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Fac Ciencias, Inst Quim, Valparaiso, Chile
[2] Pontificia Univ Catolica Valparaiso, Fac Ciencias, Inst Matemat, Valparaiso, Chile
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2014年 / 9卷 / 12期
关键词
Atmospheric corrosion; weight loss; artificial neural networks; carbon steel; galvanised steel; copper; aluminium; POWER ELECTRICAL CONDUCTORS; MARINE; STEEL; POLLUTANTS;
D O I
暂无
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Most metals and alloys exposed to the environment suffer deterioration due to the effects of atmospheric corrosion. This study presents results obtained for the corrosion of carbon steel, galvanised steel, copper and aluminium exposed to the environment for a period of 3 years, at 9 different sites around Chile. Mathematical models based on artificial neural networks are used to evaluate the corrosion of the metals and alloys as a function of meteorological variables (relative humidity, temperature and amount of rainfall), pollutants (chloride and sulphur dioxide) and time. The advantages of these models in predicting corrosion is also shown in comparison to traditional statistical regression models when considering the dependence of corrosion as a function of time alone.
引用
收藏
页码:7131 / 7151
页数:21
相关论文
共 50 条
  • [1] Prediction of corrosion potential using the generalized artificial neural networks method
    Cherifi, Wafa Nor El Houda
    Houmadi, Youcef
    Mamoune, Sidi Mohammed Aissa
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2022, 49 (06) : 1040 - 1048
  • [2] Phenomenological modelling of atmospheric corrosion using an artificial neural network
    Cai, JP
    Cottis, RA
    Lyon, SB
    CORROSION SCIENCE, 1999, 41 (10) : 2001 - 2030
  • [3] Prediction of Atmospheric Corrosion of Carbon Steel Using Artificial Neural Network Model in Local Geographical Regions
    Halama, M.
    Kreislova, K.
    Van Lysebettens, J.
    CORROSION, 2011, 67 (06)
  • [4] PREDICTION OF METAL CORROSION BY NEURAL NETWORKS
    Jancikova, Z.
    Zimny, O.
    Kostial, P.
    METALURGIJA, 2013, 52 (03): : 379 - 381
  • [5] Modelling of Atmospheric Parameters Using Artificial Neural Networks
    Demirtas, Ozlem
    Efe, Mehmet Onder
    2019 9TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2019, : 571 - 577
  • [6] Exploitation of Artificial Intelligence Methods for Prediction of Atmospheric Corrosion
    Seidl, David
    Jancikova, Zora
    Kostial, Pavol
    Ruziak, Ivan
    Kopal, Ivan
    Kreislova, Katerina
    DIFFUSION IN SOLIDS AND LIQUIDS VII, 2012, 326-328 : 65 - +
  • [7] Prediction of Atmospheric Corrosion of Ancient Door Knockers via Neural Networks
    Houshmandynia, Shahrzad
    Raked, Roya
    Golbabaei, Fardad
    CHEMICAL METHODOLOGIES, 2018, 2 (04): : 324 - 332
  • [8] Evaluation of the Atmospheric Corrosion Indices at Different Sites in Chile Using the (CLIMAT) Wire-on-Bolt Test
    Delgado, Diana
    Vera, Rosa
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (06): : 7687 - 7701
  • [9] Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys using Artificial Neural Networks
    Sosa Haudet, Santiago
    Rodriguez, Martin A.
    Carranza, Ricardo M.
    INTERNATIONAL CONGRESS OF SCIENCE AND TECHNOLOGY OF METALLURGY AND MATERIALS, SAM - CONAMET 2013, 2015, 8 : 21 - 28
  • [10] Artificial neural network modeling of atmospheric corrosion in the MICAT project
    Pintos, S
    Queipo, NV
    de Rincón, OT
    Rincón, A
    Morcillo, R
    CORROSION SCIENCE, 2000, 42 (01) : 35 - 52