Prediction of tea theanine content using near-infrared spectroscopy and flower pollination algorithm

被引:23
作者
Ong, Pauline [1 ,2 ]
Chen, Suming [1 ]
Tsai, Chao-Yin [1 ]
Chuang, Yung-Kun [3 ,4 ,5 ]
机构
[1] Natl Taiwan Univ, Dept Biomechatron Engn, Taipei, Taiwan
[2] Univ Tun Hussein Onn Malaysia, Fac Mech & Mfg Engn, Johor Baharu, Malaysia
[3] Taipei Med Univ, Coll Nutr, Master Program Food Safety, Taipei, Taiwan
[4] Taipei Med Univ, Coll Nutr, Sch Food Safety, Taipei, Taiwan
[5] Taipei Med Univ Hosp, Nutr Res Ctr, Taipei, Taiwan
关键词
Flower pollination algorithm; Near-infrared spectroscopy; Partial least squares regression; Theanine; Gaussian process regression; Support vector machine regression; PU-ERH TEAS; VARIABLE SELECTION; MULTIVARIATE CALIBRATION; CHEMOMETRIC ANALYSIS; AMINO-ACIDS; GREEN TEA; COMPONENTS; REGRESSION; MODELS;
D O I
10.1016/j.saa.2021.119657
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
In this study, near-infrared (NIR) spectroscopy was exploited for non-destructive determination of theanine content of oolong tea. The NIR spectral data (400-2500 nm) were correlated with the theanine level of 161 tea samples using partial least squares regression (PLSR) with different wavelengths selection methods, including the regression coefficient-based selection, uninformative variable elimination, variable importance in projection, selectivity ratio and flower pollination algorithm (FPA). The potential of using the FPA to select the discriminative wavelengths for PLSR was examined for the first time. The analysis showed that the PLSR with FPA method achieved better predictive results than the PLSR with full spectrum (PLSR-full). The developed simplified model using on FPA based on 12 latent variables and 89 selected wavelengths produced R-squared (R-2) value and root mean squared error (RMSE) of 0.9542, 0.8794 and 0.2045, 0.3219 for calibration and prediction, respectively. For PLSR-full, the R-2 values of 0.9068, 0.8412 and RMSEs of 0.2916, 0.3693, were achieved for calibration and prediction. Also, the optimized model using FPA outperformed other wavelengths selection methods considered in this study. The obtained results indicated the feasibility of FPA to improve the predictability of the PLSR and reduce the model complexity. The nonlinear regression models of support vector machine regression and Gaussian process regression (GPR) were further utilized to evaluate the superiority of using the FPA in the wavelength selection. The results demonstrated that utilizing the wavelength selection method of FPA and nonlinear regression model of GPR could improve the predictive performance. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Prediction of model pools for a long-term experiment using near-infrared spectroscopy
    Michel, Kerstin
    Ludwig, Bernard
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2010, 173 (01) : 55 - 60
  • [42] Prediction of quality traits in dry pepper powder using visible and near-infrared spectroscopy
    Theanjumpol, P.
    Kaur, A.
    Muenmanee, N.
    Chanbang, Y.
    Maniwara, P.
    INTERNATIONAL FOOD RESEARCH JOURNAL, 2023, 30 (01): : 193 - 204
  • [43] Determination of water content in bovine lenses using near-infrared spectroscopy
    Zink, JM
    Koenig, JL
    Williams, TR
    OPHTHALMIC RESEARCH, 1997, 29 (06) : 429 - 435
  • [44] Prediction of sorghum oil content using near-infrared hyperspectral imaging
    Mendoza, Princess Tiffany D.
    Armstrong, Paul R.
    Peiris, Kamaranga H. S.
    Siliveru, Kaliramesh
    Bean, Scott R.
    Pordesimo, Lester O.
    CEREAL CHEMISTRY, 2023, 100 (03) : 775 - 783
  • [45] The Rapid Detection of Trash Content in Seed Cotton Using Near-Infrared Spectroscopy Combined with Characteristic Wavelength Selection
    Han, Jing
    Guo, Junxian
    Zhang, Zhenzhen
    Yang, Xiao
    Shi, Yong
    Zhou, Jun
    AGRICULTURE-BASEL, 2023, 13 (10):
  • [46] Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy
    Cortes, Victoria
    Rodriguez, Alejandro
    Blasco, Jose
    Rey, Beatriz
    Besada, Cristina
    Cubero, Sergio
    Salvador, Alejandra
    Talens, Pau
    Aleixos, Nuria
    JOURNAL OF FOOD ENGINEERING, 2017, 204 : 27 - 37
  • [47] Prediction of pork quality using visible/near-infrared reflectance spectroscopy
    Savenije, B
    Geesink, GH
    van der Palen, JGP
    Hemke, G
    MEAT SCIENCE, 2006, 73 (01) : 181 - 184
  • [48] Rapid identification of the geographic origin of Taiping Houkui green tea using near-infrared spectroscopy combined with a variable selection method
    Jin, Ge
    Xu, Yifan
    Cui, Chuanjian
    Zhu, Yuanyuan
    Zong, Jianfa
    Cai, Huimei
    Ning, Jingming
    Wei, Chaoling
    Hou, Ruyan
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2022, 102 (13) : 6123 - 6130
  • [49] Variables selection methods in near-infrared spectroscopy
    Zou Xiaobo
    Zhao Jiewen
    Povey, Malcolm J. W.
    Holmes, Mel
    Mao Hanpin
    ANALYTICA CHIMICA ACTA, 2010, 667 (1-2) : 14 - 32
  • [50] Identification of microbes in wounds using near-infrared spectroscopy
    Yin, Meifang
    Li, Jiangfeng
    Huang, Lixian
    Li, Yongming
    Yuan, Mingzhou
    Luo, Yongquan
    Armato, Ubaldo
    Zhang, Lijun
    Wei, Yating
    Li, Yuanyuan
    Deng, Jiawen
    Wang, Pin
    Wu, Jun
    BURNS, 2022, 48 (04) : 791 - 798