A rough set approach to feature selection based on ant colony optimization

被引:191
|
作者
Chen, Yumin [1 ]
Miao, Duoqian [1 ]
Wang, Ruizhi [1 ]
机构
[1] Tongji Univ, Dept Comp Sci & Technol, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Rough sets; Ant colony optimization; Feature selection; Mutual information; Data mining; DIMENSIONALITY REDUCTION; ALGORITHMS;
D O I
10.1016/j.patrec.2009.10.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rough set theory is one of the effective methods to feature selection, which can preserve the meaning of the features. The essence of rough set approach to feature selection is to find a subset of the original features. Since finding a minimal subset of the features is a NP-hard problem, it is necessary to investigate effective and efficient heuristic algorithms. Ant colony optimization (ACO) has been successfully applied to many difficult combinatorial problems like quadratic assignment, traveling salesman, scheduling, etc. It is particularly attractive for feature selection since there is no heuristic information that can guide search to the optimal minimal subset every time. However, ants can discover the best feature combinations as they traverse the graph. In this paper, we propose a new rough set approach to feature selection based on ACO, which adopts mutual information based feature significance as heuristic information. A novel feature selection algorithm is also given. Jensen and Shen proposed a ACO-based feature selection approach which starts from a random feature. Our approach starts from the feature core, which changes the complete graph to a smaller one. To verify the efficiency of our algorithm, experiments are carried out on some standard UCI datasets. The results demonstrate that our algorithm can provide efficient solution to find a minimal subset of the features. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:226 / 233
页数:8
相关论文
共 50 条
  • [1] An Approach to Feature Selection Based on Ant Colony Optimization and Rough Set
    Wu, Junyun
    Qiu, Taorong
    Wang, Lu
    Huang, Haiquan
    INTELLIGENT COMPUTING AND INFORMATION SCIENCE, PT I, 2011, 134 (0I): : 466 - 471
  • [2] Feature Selection Based on Ant Colony Optimization and Rough Set Theory
    He, Ming
    ISCSCT 2008: INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 247 - 250
  • [3] A model based on ant colony system and rough set theory to feature selection
    Bello, R.
    Nowe, A.
    Caballero, Y.
    Gomez, Y.
    Vrancx, P.
    GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, : 275 - 276
  • [4] Image Feature Selection Based on Ant Colony Optimization
    Chen, Ling
    Chen, Bolun
    Chen, Yixin
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 580 - +
  • [5] An efficient ant colony optimization approach to attribute reduction in rough set theory
    Ke, Liangjun
    Feng, Zuren
    Ren, Zhigang
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1351 - 1357
  • [6] An Improved Feature Selection Algorithm Based on Ant Colony Optimization
    Peng, Huijun
    Ying, Chun
    Tan, Shuhua
    Hu, Bing
    Sun, Zhixin
    IEEE ACCESS, 2018, 6 : 69203 - 69209
  • [7] Sequence Based Feature Selection using Ant Colony Optimization
    Markid, Hossein Yeganeh
    Dadaneh, Behrouz Zamani
    Moghaddam, Mohsen Ebrahimi
    2015 5TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2015, : 100 - 105
  • [8] An unsupervised feature selection algorithm based on ant colony optimization
    Tabakhi, Sina
    Moradi, Parham
    Akhlaghian, Fardin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2014, 32 : 112 - 123
  • [9] Ant Colony Optimization for Feature Subset Selection
    Al-Ani, Ahmed
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 4, 2005, 4 : 35 - 38
  • [10] An Adapted Ant Colony Optimization for Feature Selection
    Eroglu, Duygu Yilmaz
    Akcan, Umut
    APPLIED ARTIFICIAL INTELLIGENCE, 2024, 38 (01)