AVERAGE NUMBER OF LATTICE POINTS IN A DISK

被引:6
作者
Jayakar, Sujay [1 ]
Strichartz, Robert S. [2 ]
机构
[1] 3633 19th St, San Francisco, CA 94110 USA
[2] Cornell Univ, Dept Math, Malott Hall, Ithaca, NY 14853 USA
关键词
Lattice points; Weyl asymptotics; Bessel function;
D O I
10.3934/cpaa.2016.15.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The difference between the number of lattice points in a disk of radius root t/2 pi and the area of the disk t/4 pi is equal to the error in the Weyl asymptotic estimate for the eigenvalue counting function of the Laplacian on the standard flat torus. We give a sharp asymptotic expression for the average value of the difference over the interval 0 <= t <= R. We obtain similar results for families of ellipses. We also obtain relations to the eigenvalue counting function for the Klein bottle and projective plane.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 11 条
[1]   HARMONIC FUNCTIONS AND THE SPECTRUM OF THE LAPLACIAN ON THE SIERPINSKI CARPET [J].
Begue, Matthew ;
Kalloniatis, Tristan ;
Strichartz, Robert S. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2013, 21 (01)
[2]   ON THE DISTRIBUTION OF THE NUMBER OF LATTICE POINTS INSIDE A FAMILY OF CONVEX OVALS [J].
BLEHER, P .
DUKE MATHEMATICAL JOURNAL, 1992, 67 (03) :461-481
[3]  
Bleher P., DUKE MATH J, V70, P655
[4]   THE MEAN LATTICE POINT DISCREPANCY [J].
HUXLEY, MN .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 :523-531
[5]  
IWANIEC H, 2004, AMS C PUBL, V53
[6]  
Jayakar S., 2012, AVERAGE NUMBER LATTI
[7]  
Lebedev NN., 1965, Special functions and their applications, DOI [10.1063/1.3047047, DOI 10.1063/1.3047047]
[8]  
Muller W, 1997, ACTA ARITH, V80, P89
[9]  
Sogge C.D., 2014, Annals of Mathematics Studies, V188
[10]  
Stein E.M., 2011, Princeton Lectures in Analysis