A Facile Methodology for the Development of a Printable and Flexible All-Solid-State Rechargeable Battery

被引:28
作者
De, Bibekananda [1 ]
Yadav, Amit [2 ]
Khan, Salman [2 ]
Kar, Kamal K. [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, Adv Nanoengn Mat Lab, Mat Sci Programme, Kanpur 208016, Uttar Pradesh, India
关键词
flexible solid-state battery; printable energy storage device; copper-coated carbon fiber; polymeric composite; wearable electronics; lithium; LITHIUM-ION BATTERIES; TITANIUM NITRIDE NANOWIRES; WEARABLE ELECTRONICS; ALKALINE BATTERIES; CARBON NANOTUBES; ANODE; ELECTROLYTE; CLOTH; FABRICATION; TEXTILE;
D O I
10.1021/acsami.7b04112
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Development of printable and flexible energy storage devices is one of the most promising technologies for wearable electronics in textile industry. The present work involves the design of a printable and flexible all-solid-state rechargeable battery for wearable electronics in textile applications. Copper-coated carbon fiber is used to make a polyethylene oxide) (PEO)-based polymer nanocomposite for a flexible and conductive current collector layer. Lithium iron phosphate (LiFePO4) and titanium dioxide (TiO2) are utilized to prepare the cathode and anode layers, respectively, with PEO and carbon black composites. The PEO- and Li salt-based solid composite separator layer is utilized for the solid-state and safe electrolyte. Fabrication of all these layers and assembly of them through coating on fabrics are performed in the open atmosphere without using any complex processing, as PEO prevents the degradation of the materials in the open atmosphere. The performance of the battery is evaluated through charge discharge and open-circuit voltage analyses. The battery shows an open-circuit voltage of similar to 2.67 V and discharge time similar to 2000 s, It shows similar performance at different repeated bending angles (0 degrees to 180 degrees) and continuous bending along with long, cycle life. The application of the battery; is also investigated for printable and wearable textile applications. Therefore, this printable, flexible, easily processable, and nontoxic battery with this performance has great potential to be used in portable and wearable textile electronics.
引用
收藏
页码:19870 / 19880
页数:11
相关论文
共 34 条
[1]   Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application [J].
Balo, Liton ;
Shalu ;
Gupta, Himani ;
Singh, Varun Kumar ;
Singh, Rajendra Kumar .
ELECTROCHIMICA ACTA, 2017, 230 :123-131
[2]   A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials [J].
Balogun, Muhammad-Sadeeq ;
Qiu, Weitao ;
Luo, Yang ;
Meng, Hui ;
Mai, Wenjie ;
Onasanya, Amos ;
Olaniyi, Titus K. ;
Tong, Yexiang .
NANO RESEARCH, 2016, 9 (10) :2823-2851
[3]   All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode [J].
Balogun, Muhammad-Sadeeq ;
Qiu, Weitao ;
Lyu, Feiyi ;
Luo, Yang ;
Meng, Hui ;
Li, Jiantao ;
Mai, Wenjie ;
Mai, Liqiang ;
Tong, Yexiang .
NANO ENERGY, 2016, 26 :446-455
[4]   Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries [J].
Balogun, Muhammad-Sadeeq ;
Yu, Minghao ;
Huan, Yongchao ;
Li, Cheng ;
Fang, Pingping ;
Li, Yi ;
Lu, Xihong ;
Tong, Yexiang .
NANO ENERGY, 2015, 11 :348-355
[5]   Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries [J].
Balogun, Muhammad-Sadeeq ;
Li, Cheng ;
Zeng, Yinxiang ;
Yu, Minghao ;
Wu, Qili ;
Wu, Mingmei ;
Lu, Xihong ;
Tong, Yexiang .
JOURNAL OF POWER SOURCES, 2014, 272 :946-953
[6]   Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries [J].
Balogun, Muhammad-Sadeeq ;
Yu, Minghao ;
Li, Cheng ;
Zhai, Teng ;
Liu, Yi ;
Lu, Xihong ;
Tong, Yexiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10825-10829
[7]  
Chen X., 2008, Patent No. [EP 2125615B1, 2125615]
[8]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[9]   Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties [J].
Dambournet, Damien ;
Belharouak, Ilias ;
Amine, Khalil .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1173-1179
[10]   A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc-air batteries [J].
Fu, Jing ;
Zhang, Jing ;
Song, Xueping ;
Zarrin, Hadis ;
Tian, Xiaofei ;
Qiao, Jinli ;
Rasen, Lathanken ;
Li, Kecheng ;
Chen, Zhongwei .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) :663-670