Brieskorn manifolds in contact topology

被引:56
作者
Kwon, Myeonggi [1 ,2 ]
van Koert, Otto [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Bldg 27,Room 402,San 56-1, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Bldg 27,Room 402,San 56-1, Seoul 151747, South Korea
关键词
SYMPLECTIC HOMOLOGY; MORSE-THEORY; FLOER HOMOLOGY; EXISTENCE; GEOMETRY; SYSTEMS;
D O I
10.1112/blms/bdv088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this survey, we give an overview of Brieskorn manifolds and varieties, and their role in contact topology. We discuss open books, fillings and invariants such as contact and symplectic homology. We also present some new results involving exotic contact structures, invariants and orderability. The main tool for the required computations is a version of the Morse-Bott spectral sequence. We provide a proof for the particular version that is useful for us.
引用
收藏
页码:173 / 241
页数:69
相关论文
共 80 条
[1]   NONREGULAR CONTACT STRUCTURES ON BRIESKORN MANIFOLDS [J].
ABE, K ;
ERBACHER, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (02) :407-409
[2]  
Abouzaid M., 2013, ARXIV13123354
[3]  
Albers P., 2013, ARXIV13026576
[4]   A lemma on systems of knotted curves [J].
Alexander, JW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1923, 9 :93-95
[5]  
[Anonymous], 2008, OXFORD MATH MONOGRAP
[6]  
Arnold V. I., 1995, PROG MATH, V133, P99
[7]  
BIRKHOFF GD, 1966, AM MATH SOC C PUBLIC, V9
[8]  
BORMAN M., 2014, ARXIV14046157
[9]  
Bourgeois F., 2002, THESIS
[10]  
Bourgeois F., 2012, ARXIV12123731