Weak solutions to degenerate complex Monge-Ampere flows II

被引:22
|
作者
Eyssidieux, Philippe [1 ,2 ]
Guedj, Vincent [2 ,3 ]
Zeriahi, Ahmed [3 ]
机构
[1] Univ Grenoble 1, F-38041 Grenoble, France
[2] Inst Univ France, Paris, France
[3] Inst Math Toulouse, Toulouse, France
关键词
Complex Monge-Ampere flows; Kahler-Ricci flow; Canonical singularities; Viscosity solutions; VISCOSITY SOLUTIONS;
D O I
10.1016/j.aim.2016.02.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Studying the (long-term) behavior of the Kahler-Ricci flow on mildly singular varieties, one is naturally led to study weak solutions of degenerate parabolic complex Monge-Ampere equations. The purpose of this article, the second of a series on this subject, is to develop a viscosity theory for degenerate complex Monge-Ampere flows on compact Kahler manifolds. Our general theory allows in particular to define and study the (normalized) Kahler-Ricci flow on varieties with canonical singularities, generalizing results of Song and Tian. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:37 / 80
页数:44
相关论文
共 50 条
  • [21] The obstacle problem for parabolic Monge-Ampere equation
    Lee, Ki-Ahm
    Lee, Taehun
    Park, Jinwan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 309 : 608 - 649
  • [22] A Nonlinear Mean Value Property for the Monge-Ampere Operator
    Blanc, Pablo
    Charro, Fernando
    Manfredi, Juan J.
    Rossi, Julio D.
    JOURNAL OF CONVEX ANALYSIS, 2021, 28 (02) : 353 - 386
  • [23] SMOOTH APPROXIMATIONS OF THE ALEKSANDROV SOLUTION OF THE MONGE-AMPERE EQUATION
    Awanou, Gerard
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (02) : 427 - 441
  • [24] The obstacle problem for the Monge-Ampere equation with the lower obstacle
    Lee, Ki-Ahm
    Lee, Taehun
    Park, Jinwan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 210
  • [25] TWO NUMERICAL METHODS FOR THE ELLIPTIC MONGE-AMPERE EQUATION
    Benamou, Jean-David
    Froese, Brittany D.
    Oberman, Adam M.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (04): : 737 - 758
  • [26] A NOTE ON THE MONGE-AMPERE TYPE EQUATIONS WITH GENERAL SOURCE TERMS
    Qiu, Weifeng
    Tang, Lan
    MATHEMATICS OF COMPUTATION, 2020, 89 (326) : 2675 - 2706
  • [27] Stability and guaranteed error control of approximations to the Monge-Ampere equation
    Gallistl, Dietmar
    Tran, Ngoc Tien
    NUMERISCHE MATHEMATIK, 2024, 156 (01) : 107 - 131
  • [28] A CONVERGENT QUADRATURE-BASED METHOD FOR THE MONGE-AMPERE EQUATION
    Brusca, Jake
    Hamfeldt, Brittany Froese
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03) : A1097 - A1124
  • [29] FINITE ELEMENT APPROXIMATIONS OF THE THREE DIMENSIONAL MONGE-AMPERE EQUATION
    Brenner, Susanne Cecelia
    Neilan, Michael
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (05): : 979 - 1001
  • [30] CONVERGENT FILTERED SCHEMES FOR THE MONGE-AMPERE PARTIAL DIFFERENTIAL EQUATION
    Froese, Brittany D.
    Oberman, Adam M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 423 - 444