Carbon nanotubes embedded in a polyimide foil for proton acceleration with a sub-ns laser

被引:2
作者
Mangione, A. [1 ,9 ,10 ]
Picciotto, A. [2 ]
Margarone, D. [3 ,4 ]
Malinowska, A. [5 ]
Szydlowsky, A. [6 ]
Velyhan, A. [3 ]
Krasa, J. [7 ]
Tomarchio, E. [8 ]
Ganci, F. [8 ]
机构
[1] IEMEST Res Inst, Dept Appl Phys & Earth Syst Sci, Via M Miraglia 20, I-90139 Palermo, Italy
[2] Fdn Bruno Kessler, Sensors & Devices Div, Micronano Facil, Via Sommar 18, I-38123 Povo, Trento, Italy
[3] Czech Acad Sci, Inst Phys, ELI Beamlines Ctr, Radnici 835, Dolni Brezany 2452 41, Czech Republic
[4] Queens Univ Belfast, Sch Math & Phys, Ctr Plasma Phys, Belfast BT7 1NN, Antrim, North Ireland
[5] Natl Ctr Nucl Res, PL-05400 Otwock, Poland
[6] Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland
[7] Czech Acad Sci, Inst Phys, Prague 18221 8, Czech Republic
[8] Univ Palermo, Dept Engn, Viale Sci Ed 6, I-90128 Palermo, Italy
[9] Inst Adv Technol, Trapani, Italy
[10] Univ Palermo, DICGIM Dept, Palermo, Italy
关键词
Ion sources (positive ions; negative ions; electron cyclotron resonance (ECR); electron beam (EBIS)); Manufacturing; PLASMA;
D O I
10.1088/1748-0221/16/07/P07008
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A series of thin films made of aligned carbon nanotubes (CNTs) embedded in a polyimide substrate was designed, fabricated and used for the first time to accelerate protons and C ions by interaction with a sub-nanosecond, high power laser beam (600 J energy and 300 ps pulse width) with peak intensity of about 3 x 10(16)W/cm(2) on target. Each target was 5 mu m thick, and the composite material contained CNTs aligned in different directions in the substrate. The results obtained from the analysis of a Thomson Parabola spectrometer, and of the spots imprinted by ions on a series of PM355 nuclear track detectors, indicate high energies (up to 3MeV for protons and 9MeV for C ions) and a marked influence of the CNTs' orientation on the produced proton beam current. An increase of the proton fluxes, more than two orders of magnitude, was recorded with the targets containing CNTs aligned parallel to the target normal, in comparison to the other targets. The presented experimental results demonstrate that the laser-driven proton beam flux can be increased using ad hoc designed targets (with embedded and aligned nanotubes) and sub-nanosecond laser pulses with moderate intensities and poor temporal contrast, thus in an acceleration regime very far from those typically investigated experimentally using relativistic intensities (>5 x 10(18)W/cm(2)) and short laser pulses (10 fs to 10 ps).
引用
收藏
页数:10
相关论文
共 22 条
[1]   Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas [J].
Bin, J. H. ;
Ma, W. J. ;
Wang, H. Y. ;
Streeter, M. J. V. ;
Kreuzer, C. ;
Kiefer, D. ;
Yeung, M. ;
Cousens, S. ;
Foster, P. S. ;
Dromey, B. ;
Yan, X. Q. ;
Ramis, R. ;
Meyer-ter-Vehn, J. ;
Zepf, M. ;
Schreiber, J. .
PHYSICAL REVIEW LETTERS, 2015, 115 (06)
[2]   Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators [J].
Fuchs, J ;
Cowan, TE ;
Audebert, P ;
Ruhl, H ;
Gremillet, L ;
Kemp, A ;
Allen, M ;
Blazevic, A ;
Gauthier, JC ;
Geissel, M ;
Hegelich, M ;
Karsch, S ;
Parks, P ;
Roth, M ;
Sentoku, Y ;
Stephens, R ;
Campbell, EM .
PHYSICAL REVIEW LETTERS, 2003, 91 (25)
[3]   High-current stream of energetic α particles from laser-driven proton-boron fusion [J].
Giuffrida, Lorenzo ;
Belloni, Fabio ;
Margarone, Daniele ;
Petringa, Giada ;
Milluzzo, Giuliana ;
Scuderi, Valentina ;
Velyhan, Andriy ;
Rosinski, Marcin ;
Picciotto, Antonino ;
Kucharik, Milan ;
Dostal, Jan ;
Dudzak, Roman ;
Krasa, Josef ;
Istokskaia, Valeria ;
Catalano, Roberto ;
Tudisco, Salvatore ;
Verona, Claudio ;
Jungwirth, Karel ;
Bellutti, Pierluigi ;
Korn, Georg ;
Cirrone, G. A. P. .
PHYSICAL REVIEW E, 2020, 101 (01)
[4]   The Prague Asterix Laser System [J].
Jungwirth, K ;
Cejnarova, A ;
Juha, L ;
Kralikova, B ;
Krasa, J ;
Krousky, E ;
Krupickova, P ;
Laska, L ;
Masek, K ;
Mocek, T ;
Pfeifer, M ;
Präg, A ;
Renner, O ;
Rohlena, K ;
Rus, B ;
Skala, J ;
Straka, P ;
Ullschmied, J .
PHYSICS OF PLASMAS, 2001, 8 (05) :2495-2501
[5]   Short pulse laser interaction with micro-structured targets: simulations of laser absorption and ion acceleration [J].
Klimo, O. ;
Psikal, J. ;
Limpouch, J. ;
Proska, J. ;
Novotny, F. ;
Ceccotti, T. ;
Floquet, V. ;
Kawata, S. .
NEW JOURNAL OF PHYSICS, 2011, 13
[6]   Production of relativistic electrons, MeV deuterons and protons by sub-nanosecond terawatt laser [J].
Krasa, J. ;
Klir, D. ;
Rezac, K. ;
Cikhardt, J. ;
Krus, M. ;
Velyhan, A. ;
Pfeifer, M. ;
Buryskova, S. ;
Dostal, J. ;
Burian, T. ;
Dudzak, R. ;
Turek, K. ;
Pisarczyk, T. ;
Kalinowska, Z. ;
Chodukowski, T. ;
Kaufman, J. .
PHYSICS OF PLASMAS, 2018, 25 (11)
[7]   Ion acceleration by superintense laser-plasma interaction [J].
Macchi, Andrea ;
Borghesi, Marco ;
Passoni, Matteo .
REVIEWS OF MODERN PHYSICS, 2013, 85 (02) :751-793
[8]   Calibration of new batches and a study of applications of nuclear track detectors under the harsh conditions of nuclear fusion experiments [J].
Malinowska, A. ;
Szydlowski, A. ;
Jaskola, M. ;
Korman, A. ;
Malinowski, K. ;
Kuk, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2012, 281 :56-63
[9]   Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target [J].
Margarone, D. ;
Kim, I. J. ;
Psikal, J. ;
Kaufman, J. ;
Mocek, T. ;
Choi, I. W. ;
Stolcova, L. ;
Proska, J. ;
Choukourov, A. ;
Melnichuk, I. ;
Klimo, O. ;
Limpouch, J. ;
Sung, J. H. ;
Lee, S. K. ;
Korn, G. ;
Jeong, T. M. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2015, 18 (07)
[10]   Advanced scheme for high-yield laser driven nuclear reactions [J].
Margarone, D. ;
Picciotto, A. ;
Velyhan, A. ;
Krasa, J. ;
Kucharik, M. ;
Mangione, A. ;
Szydlowsky, A. ;
Malinowska, A. ;
Bertuccio, G. ;
Shi, Y. ;
Crivellari, M. ;
Ullschmied, J. ;
Bellutti, P. ;
Korn, G. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (01)