Crystal Phase-Dependent Nanophotonic Resonances in InAs Nanowire Arrays

被引:24
作者
Anttu, Nicklas [1 ,2 ]
Lehmann, Sebastian [1 ,2 ]
Storm, Kristian [1 ,2 ]
Dick, Kimberly A. [1 ,2 ,3 ,4 ]
Samuelson, Lars [1 ,2 ]
Wu, Phillip M. [1 ,2 ]
Pistol, Mats-Erik [1 ,2 ]
机构
[1] Lund Univ, Div Solid State Phys, S-22100 Lund, Sweden
[2] Lund Univ, Nanometer Struct Consortium NmC LU, S-22100 Lund, Sweden
[3] Ctr Anal & Synth, S-22100 Lund, Sweden
[4] Lund Univ, S-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
InAs nanowire array; nanophotonic resonance; zinc-blende; wurtzite; III-V NANOWIRES; PHOTOVOLTAIC APPLICATIONS; OPTICAL-ABSORPTION; LIGHT-ABSORPTION; SOLAR-CELLS; DEVICES; SUPERLATTICES; PARAMETERS; DESIGN; GROWTH;
D O I
10.1021/nl502306x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanostructures have many material, electronic, and optical properties that are not found in bulk systems and that are relevant for technological applications. For example, nanowires realized from III-V semiconductors can be grown into wurtzite crystal structure. This crystal structure does not naturally exist in bulk where these materials form the zinc-blende counterpart. Being able to concomitantly grow these nanowires in the zinc-blende and/or wurtzite crystal structure prlovides an important degree of control for the design and optimization of optoelectronic applications based on these semiconductor nanostructures. However, the refractive indices of this new crystallographic phase have so far not been elucidated. This shortcoming makes it impossible to predict and utilize he full potential of these new nanostructured materials for optoelectronics applications a careful design and optimization of optical resonances by tuning the nanostrucuted geometry is needed to achieve optimal performance. Here, we report and analyze striking differeences in the optical response of nanophotonic resonances in wurtzite and zinc-blend InAs nanowire arrays. Specifically, through reflectance measurements we find that the resonance can be tuned down to lambda approximate to 380 nm in wurtzite nanowires by decreasing the nanowire diameter. In stark contrast, a similar tuning to below approximate to 500 nm is not possible in the zinc-blende nanowires. Furthermore, we find that the wurtzite nanowires can absorb twice as strongly as the zinc-blende nanowires. We attribute these strikingly large differences in resonant behavior to large differences between the refractive indices of the two crystallographic phases realized in these nanostructures. We anticipate our finding to be relevant for other III-B materials as well as for all material systems that manifest polytypism. Taken together, our results demonstrate crystal phase engineering as a potentially new design dimension for optoelectronics applications.
引用
收藏
页码:5650 / 5655
页数:6
相关论文
共 39 条
[1]   Twinning superlattices in indium phosphide nanowires [J].
Algra, Rienk E. ;
Verheijen, Marcel A. ;
Borgstrom, Magnus T. ;
Feiner, Lou-Fe ;
Immink, George ;
van Enckevort, Willem J. P. ;
Vlieg, Elias ;
Bakkers, Erik P. A. M. .
NATURE, 2008, 456 (7220) :369-372
[2]   Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes [J].
Anttu, N. ;
Xu, H. Q. .
PHYSICAL REVIEW B, 2011, 83 (16)
[3]   Coupling of Light into Nanowire Arrays and Subsequent Absorption [J].
Anttu, N. ;
Xu, H. Q. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (11) :7183-7187
[4]  
Anttu N, 2013, OPT EXPRESS, V21, pA558, DOI 10.1364/OE.21.00A558
[5]   Reflection measurements to reveal the absorption in nanowire arrays [J].
Anttu, Nicklas ;
Iqbal, Azhar ;
Heurlin, Magnus ;
Samuelson, Lars ;
Borgstrom, Magnus T. ;
Pistol, Mats-Erik ;
Yartsev, Arkady .
OPTICS LETTERS, 2013, 38 (09) :1449-1451
[7]   Drastically increased absorption in vertical semiconductor nanowire arrays: A non-absorbing dielectric shell makes the difference [J].
Anttu, Nicklas ;
Namazi, Kousar L. ;
Wu, Phillip M. ;
Yang, Pengfei ;
Xu, Hongxing ;
Xu, H. Q. ;
Hakanson, Ulf .
NANO RESEARCH, 2012, 5 (12) :863-874
[8]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[9]   Electronic bands of III-V semiconductor polytypes and their alignment [J].
Belabbes, Abderrezak ;
Panse, Christian ;
Furthmueller, Juergen ;
Bechstedt, Friedhelm .
PHYSICAL REVIEW B, 2012, 86 (07)
[10]  
Cao LY, 2009, NAT MATER, V8, P643, DOI [10.1038/nmat2477, 10.1038/NMAT2477]