Small RNAs - secrets and surprises of the genome

被引:72
作者
Chen, Xuemei [1 ]
机构
[1] Univ Calif Riverside, Dept Bot & Plant Sci, Inst Integrat Genome Biol, Riverside, CA 92521 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
microRNA; small interfering RNAs; RNA silencing; RNA-directed DNA methylation; virus; DIRECTED DNA-METHYLATION; TRANS-ACTING SIRNAS; DOUBLE-STRANDED-RNA; NATURAL ANTISENSE TRANSCRIPTS; POTATO-VIRUS-X; VEGETATIVE PHASE-CHANGE; CHALCONE SYNTHASE GENE; SHORT INTERFERING RNA; BINDING-PROTEIN HYL1; DE-NOVO METHYLATION;
D O I
10.1111/j.1365-313X.2009.04089.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
P>Small RNAs associated with post-transcriptional gene silencing were first discovered in plants in 1999. Although this study marked the beginning of small RNA biology in plants, the sequence of the Arabidopsis genome and related genomic resources that were soon to become available to the Arabidopsis community launched the research on small RNAs at a remarkable pace. In 2000, when the genetic blueprint of the first plant species was revealed, the tens of thousands of endogenous small RNA species as we know today remained hidden features of the genome. However, the subsequent 10 years have witnessed an explosion of our knowledge of endogenous small RNAs: their widespread existence, diversity, biogenesis, mode of action and biological functions. As key sequence-specific regulators of gene expression in the nucleus and the cytoplasm, small RNAs influence almost all aspects of plant biology. Because of the extensive conservation of mechanisms concerning the biogenesis and molecular actions of small RNAs, research in the model plant Arabidopsis has contributed vital knowledge to the small RNA field in general. Our knowledge of small RNAs gained primarily from Arabidopsis has also led to the invention of effective gene knock-down technologies that are applicable to diverse plant species, including crop plants. Here, I attempt to recount the developments of the small RNA field in the pre- and post-genomic era, in celebration of the 10th anniversary of the completion of the first plant genome.
引用
收藏
页码:941 / 958
页数:18
相关论文
共 222 条
[1]   DELAY OF DISEASE DEVELOPMENT IN TRANSGENIC PLANTS THAT EXPRESS THE TOBACCO MOSAIC-VIRUS COAT PROTEIN GENE [J].
ABEL, PP ;
NELSON, RS ;
DE, B ;
HOFFMANN, N ;
ROGERS, SG ;
FRALEY, RT ;
BEACHY, RN .
SCIENCE, 1986, 232 (4751) :738-743
[2]   DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7 [J].
Adenot, Xavier ;
Elmayan, Taline ;
Lauressergues, Dominique ;
Boutet, Stéphanie ;
Bouché, Nicolas ;
Gasciolli, Virginie ;
Vaucheret, Hervé .
CURRENT BIOLOGY, 2006, 16 (09) :927-932
[3]   An RNA-dependent RNA polymerase is required for paramutation in maize [J].
Alleman, Mary ;
Sidorenko, Lyudmila ;
McGinnis, Karen ;
Seshadri, Vishwas ;
Dorweiler, Jane E. ;
White, Joshua ;
Sikkink, Kristin ;
Chandler, Vicki L. .
NATURE, 2006, 442 (7100) :295-298
[4]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[5]   Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species [J].
Alvarez, JP ;
Pekker, I ;
Goldshmidt, A ;
Blum, E ;
Amsellem, Z ;
Eshed, Y .
PLANT CELL, 2006, 18 (05) :1134-1151
[6]   A viral suppressor of gene silencing in plants [J].
Anandalakshmi, R ;
Pruss, GJ ;
Ge, X ;
Marathe, R ;
Mallory, AC ;
Smith, TH ;
Vance, VB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :13079-13084
[7]   Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA [J].
Angell, SM ;
Baulcombe, DC .
EMBO JOURNAL, 1997, 16 (12) :3675-3684
[8]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[9]   Common functions for diverse small RNAs of land plants [J].
Axtell, Michael J. ;
Snyder, Jo Ann ;
Bartell, David P. .
PLANT CELL, 2007, 19 (06) :1750-1769
[10]   Antiquity of microRNAs and their targets in land plants [J].
Axtell, MJ ;
Bartel, DP .
PLANT CELL, 2005, 17 (06) :1658-1673