Sigma profiles in deep learning: towards a universal molecular descriptor

被引:38
作者
Abranches, Dinis O. [1 ]
Zhang, Yong [1 ]
Maginn, Edward J. [1 ]
Colon, Yamil J. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
关键词
PRINCIPLES;
D O I
10.1039/d2cc01549h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work showcases the remarkable ability of sigma profiles to function as molecular descriptors in deep learning. The sigma profiles of 1432 compounds are used to train convolutional neural networks that accurately correlate and predict a wide range of physicochemical properties. The architectures developed are then exploited to include temperature as an additional feature.
引用
收藏
页码:5630 / 5633
页数:4
相关论文
共 24 条
[1]  
Albawi S, 2017, I C ENG TECHNOL
[2]   Dragonfly-Support Vector Machine for Regression Modeling of the Activity Coefficient at Infinite Dilution of Solutes in Imidazolium Ionic Liquids Using σ-Profile Descriptors [J].
Benimam, Hania ;
Moussa, Cherif Si ;
Hentabli, Mohamed ;
Hanini, Salah ;
Laidi, Maamar .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2020, 65 (06) :3161-3172
[3]   Deep learning for computational chemistry [J].
Goh, Garrett B. ;
Hodas, Nathan O. ;
Vishnu, Abhinav .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2017, 38 (16) :1291-1307
[4]   Sherpa: Robust hyperparameter optimization for machine learning [J].
Hertel, Lars ;
Collado, Julian ;
Sadowski, Peter ;
Ott, Jordan ;
Baldi, Pierre .
SOFTWAREX, 2020, 12
[5]   Convolutional neural network based on SMILES representation of compounds for detecting chemical motif [J].
Hirohara, Maya ;
Saito, Yutaka ;
Koda, Yuki ;
Sato, Kengo ;
Sakakibara, Yasubumi .
BMC BIOINFORMATICS, 2018, 19
[6]   Estimation of Hansen solubility parameters using multivariate nonlinear QSPR modeling with COSMO screening charge density moments [J].
Jarvas, Gabor ;
Quellet, Christian ;
Dallos, Andras .
FLUID PHASE EQUILIBRIA, 2011, 309 (01) :8-14
[7]   Deep Learning for Drug Design: an Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era [J].
Jing, Yankang ;
Bian, Yuemin ;
Hu, Ziheng ;
Wang, Lirong ;
Xie, Xiang-Qun Sean .
AAPS JOURNAL, 2018, 20 (03)
[8]   Molecular graph convolutions: moving beyond fingerprints [J].
Kearnes, Steven ;
McCloskey, Kevin ;
Berndl, Marc ;
Pande, Vijay ;
Riley, Patrick .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (08) :595-608
[9]   CONDUCTOR-LIKE SCREENING MODEL FOR REAL SOLVENTS - A NEW APPROACH TO THE QUANTITATIVE CALCULATION OF SOLVATION PHENOMENA [J].
KLAMT, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (07) :2224-2235
[10]  
Klamt A., 2005, COSMO-RS: from quantum chemistry to fluid phase thermodynamics and drug design