On (k,p)-Fibonacci Numbers

被引:9
作者
Bednarz, Natalia [1 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, Al Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
关键词
Fibonacci numbers; Pell numbers; Narayana numbers;
D O I
10.3390/math9070727
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study a new two-parameters generalization of the Fibonacci numbers, which generalizes Fibonacci numbers, Pell numbers, and Narayana numbers, simultaneously. We prove some identities which generalize well-known relations for Fibonacci numbers, Pell numbers and their generalizations. A matrix representation for generalized Fibonacci numbers is given, too.
引用
收藏
页数:13
相关论文
共 25 条
[1]  
Bednarz N., 2021, COMMENTAT MATH U CAR
[2]  
Bednarz U., 2013, COMMENT MATH UNIV CA, V53, P35, DOI DOI 10.14708/CM.V53I1.771
[3]  
Bednarz U., 2015, J. Appl. Math., V2015, P7, DOI 10.1155/2015/837917
[4]  
Catarino P., 2013, Int. J. Math. Anal., V7, P1877
[5]  
ERCOLANO J, 1979, FIBONACCI QUART, V17, P71
[6]   The k-Fibonacci sequence and the Pascal 2-triangle [J].
Falcon, Sergio ;
Plaza, Angel .
CHAOS SOLITONS & FRACTALS, 2007, 33 (01) :38-49
[7]   On the Fibonacci k-numbers [J].
Falcon, Sergio ;
Plaza, Angel .
CHAOS SOLITONS & FRACTALS, 2007, 32 (05) :1615-1624
[8]  
Hoggatt V. E., 1969, Fibonacci and Lucas numbers
[9]  
Horadam A. F., 1971, The Fibonacci Quarterly, V9, P245
[10]   GENERATING FUNCTIONS FOR POWERS OF A CERTAIN GENERALISED SEQUENCE OF NUMBERS [J].
HORADAM, AF .
DUKE MATHEMATICAL JOURNAL, 1965, 32 (03) :437-&