Electron ptychography achieves atomic-resolution limits set by lattice vibrations

被引:238
作者
Chen, Zhen [1 ]
Jiang, Yi [2 ]
Shao, Yu-Tsun [1 ]
Holtz, Megan E. [3 ,7 ]
Odstrcil, Michal [4 ,8 ]
Guizar-Sicairos, Manuel [4 ]
Hanke, Isabelle [5 ]
Ganschow, Steffen [5 ]
Schlom, Darrell G. [3 ,5 ,6 ]
Muller, David A. [1 ,6 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[2] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[3] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[4] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[5] Leibniz Inst Kristallzuchtung, Max Born Str 2, D-12489 Berlin, Germany
[6] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
[7] Colorado Sch Mines, Departure Met & Mat Engn, Golden, CO 80401 USA
[8] Carl Zeiss SMT, Carl Zeiss Str 22, D-73447 Oberkochen, Germany
基金
美国国家科学基金会;
关键词
X-RAY; TRANSMISSION MICROSCOPY; DIFFRACTION; ORTHOSCANDATE; SCATTERING; DETECTOR; DEPTH;
D O I
10.1126/science.abg2533
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transmission electron microscopes use electrons with wavelengths of a few picometers, potentially capable of imaging individual atoms in solids at a resolution ultimately set by the intrinsic size of an atom. However, owing to lens aberrations and multiple scattering of electrons in the sample, the image resolution is reduced by a factor of 3 to 10. By inversely solving the multiple scattering problem and overcoming the electron-probe aberrations using electron ptychography, we demonstrate an instrumental blurring of less than 20 picometers and a linear phase response in thick samples. The measured widths of atomic columns are limited by thermal fluctuations of the atoms. Our method is also capable of locating embedded atomic dopant atoms in all three dimensions with subnanometer precision from only a single projection measurement.
引用
收藏
页码:826 / +
页数:41
相关论文
共 57 条
[1]   Modelling the inelastic scattering of fast electrons [J].
Allen, L. J. ;
D'Alfonso, A. J. ;
Findlay, S. D. .
ULTRAMICROSCOPY, 2015, 151 :11-22
[2]   Sub-angstrom resolution using aberration corrected electron optics [J].
Batson, PE ;
Dellby, N ;
Krivanek, OL .
NATURE, 2002, 418 (6898) :617-620
[3]  
Born M., 1989, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, V6
[4]   Structure Retrieval at Atomic Resolution in the Presence of Multiple Scattering of the Electron Probe [J].
Brown, H. G. ;
Chen, Z. ;
Weyland, M. ;
Ophus, C. ;
Ciston, J. ;
Allen, L. J. ;
Findlay, S. D. .
PHYSICAL REVIEW LETTERS, 2018, 121 (26)
[5]  
Chen Z., 2021, PARADIM
[6]  
Chen Z., 2021, ZENODO, DOI [10.5281/zenodo.4659690, DOI 10.5281/ZENODO.4659690]
[7]   Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose [J].
Chen, Zhen ;
Odstrcil, Michal ;
Jiang, Yi ;
Han, Yimo ;
Chiu, Ming-Hui ;
Li, Lain-Jong ;
Muller, David A. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons [J].
Close, R. ;
Chen, Z. ;
Shibata, N. ;
Findlay, S. D. .
ULTRAMICROSCOPY, 2015, 159 :124-137
[9]   THE SCATTERING OF ELECTRONS BY ATOMS AND CRYSTALS .1. A NEW THEORETICAL APPROACH [J].
COWLEY, JM ;
MOODIE, AF .
ACTA CRYSTALLOGRAPHICA, 1957, 10 (10) :609-619
[10]   Inversion of Many-Beam Bragg Intensities for Phasing by Iterated Projections: Removal of Multiple Scattering Artifacts from Diffraction Data [J].
Donatelli, Jeffrey J. ;
Spence, John C. H. .
PHYSICAL REVIEW LETTERS, 2020, 125 (06)