Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries

被引:108
作者
Wilson, AM
Zank, G
Eguchi, K
Xing, W
Dahn, JR [1 ]
机构
[1] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
[2] Dow Corning Asia Ltd, Kanagawa 25801, Japan
[3] Dalhousie Univ, Dept Phys, Halifax, NS B3H 3J5, Canada
关键词
lithium-ion batteries; silicon polymers; anodes;
D O I
10.1016/S0378-7753(96)02551-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe the characteristics of materials prepared by the pyrolysis of over 50 different silicon-containing polymers, including polysilanes, polysiloxanes, and pitch silane blends. We investigate the electrochemical behaviour and structural properties of these materials as a function of their stoichiometry. Based on our findings we propose a structural phase diagram which illustrates possible structures of these materials Our results suggest that the electrochemical behaviour of these materials, as might be expected, varies with stoichiometry and structure. We recommend stoichiometric ranges to be avoided for lithium-ion battery applications. (C) 1997 Published by Elsevier Science S.A.
引用
收藏
页码:195 / 200
页数:6
相关论文
共 50 条
[21]   Mechanics of high-capacity electrodes in lithium-ion batteries [J].
Zhu, Ting .
CHINESE PHYSICS B, 2016, 25 (01)
[22]   A silicon-containing nanocomposite for a thin-film lithium-ion battery [J].
Berdnikov, A. E. ;
Gerashchenko, V. N. ;
Gusev, V. N. ;
Kulova, T. L. ;
Metlitskaya, A. V. ;
Mironenko, A. A. ;
Rudyi, A. S. ;
Skundin, A. M. .
TECHNICAL PHYSICS LETTERS, 2013, 39 (04) :350-352
[23]   Silicon/Biogas-Derived Carbon Nanofibers Composites for Anodes of Lithium-Ion Batteries [J].
Camean, Ignacio ;
Cuesta, Nuria ;
Ramos, Alberto ;
Garcia, Ana B. .
C-JOURNAL OF CARBON RESEARCH, 2020, 6 (02)
[24]   High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries [J].
Tian, Huajun ;
Xin, Fengxia ;
Wang, Xiaoliang ;
He, Wei ;
Han, Weiqiang .
JOURNAL OF MATERIOMICS, 2015, 1 (03) :153-169
[25]   Hydrocolloids as binders for graphite anodes of lithium-ion batteries [J].
Cuesta, Nuria ;
Ramos, Alberto ;
Camean, Ignacio ;
Antuna, Cristina ;
Garcia, Ana B. .
ELECTROCHIMICA ACTA, 2015, 155 :140-147
[26]   Nickel Niobate Anodes for High Rate Lithium-Ion Batteries [J].
Xia, Rui ;
Zhao, Kangning ;
Kuo, Liang-Yin ;
Zhang, Lei ;
Cunha, Daniel M. ;
Wang, Yang ;
Huang, Sizhao ;
Zheng, Jie ;
Boukamp, Bernard ;
Kaghazchi, Payam ;
Sun, Congli ;
ten Elshof, Johan E. ;
Huijben, Mark .
ADVANCED ENERGY MATERIALS, 2022, 12 (01)
[27]   Stable anodes for lithium-ion batteries based on tin-containing silicon oxycarbonitride ceramic nanocomposites [J].
Wang, Jun ;
Kober, Delf ;
Shao, Gaofeng ;
Epping, Jan Dirk ;
Goerke, Oliver ;
Li, Shuang ;
Gurlo, Aleksander ;
Bekheet, Maged F. .
MATERIALS TODAY ENERGY, 2022, 26
[28]   Silicon-based materials as high capacity anodes for next generation lithium ion batteries [J].
Liang, Bo ;
Liu, Yanping ;
Xu, Yunhua .
JOURNAL OF POWER SOURCES, 2014, 267 :469-490
[29]   Hierarchical Carbon Shell Compositing Microscale Silicon Skeleton as High-Performance Anodes for Lithium-Ion Batteries [J].
An, Weili ;
He, Peng ;
Xiao, Chengmao ;
Guo, Eming ;
Pang, Chunlei ;
He, Xueqin ;
Ren, Jianguo ;
Yuan, Guohui ;
Du, Ning ;
Yang, Deren .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) :4976-4985
[30]   Electrode Design from "Internal" to "External" for High Stability Silicon Anodes in Lithium-Ion Batteries [J].
Qi, Shaowei ;
Zhang, Xinghao ;
Lv, Wei ;
Zhang, Yunbo ;
Kong, Debin ;
Huang, Zhijia ;
Yang, Quan-Hong .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (15) :14142-14149