Stability of an Additive-Cubic-Quartic Functional Equation

被引:24
作者
Eshaghi-Gordji, M. [2 ]
Kaboli-Gharetapeh, S. [3 ]
Park, Choonkil [1 ]
Zolfaghari, Somayyeh [2 ]
机构
[1] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
[2] Semnan Univ, Dept Math, Semnan, Iran
[3] Payame Nour Univ Mashhad, Dept Math, Mashhad, Iran
关键词
HYERS-ULAM STABILITY;
D O I
10.1155/2009/395693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the additive-cubic-quartic functional equation 11[f(x + 2y) + f (x - 2y)] = 44[f(x + y) + f(x - y )} + 12f(3y) - 48f(2y) + 60f(y) - 66f(x) and prove the generalized Hyers-Ulam stability of the additive-cubic-quartic functional equation in Banach spaces. Copyright (C) 2009 M. Eshaghi-Gordji et al.
引用
收藏
页数:20
相关论文
共 15 条
[1]  
Aczel J., 1989, ENCY MATH ITS APPL, V31
[2]  
[Anonymous], MATH ITS APPL
[3]  
[Anonymous], 1940, PROBLEMS MODERN MATH
[4]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[5]  
Cholewa P.W., 1984, Aequat. Math, V27, P76, DOI [10.1007/BF02192660, DOI 10.1007/BF02192660]
[6]  
Gajda Z., 1991, Internat. J. Math. Math. Sci., V14, P431, DOI [10.1155/S016117129100056X, DOI 10.1155/S016117129100056X]
[7]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[8]  
Grabiec A, 1996, PUBL MATH-DEBRECEN, V48, P217
[9]  
Hyers D. H., 1998, PROGR NONLINEAR DIFF, V34
[10]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224