A Combination of HA and PA Mutations Enhances Virulence in a Mouse-Adapted H6N6 Influenza A Virus

被引:38
作者
Tan, Likai [1 ]
Su, Shuo [1 ]
Smith, David K. [2 ,3 ]
He, Shuyi [1 ]
Zheng, Yun [1 ]
Shao, Zhenwen [1 ]
Ma, Jun [1 ]
Zhu, Huachen [2 ,3 ]
Zhang, Guihong [1 ]
机构
[1] South China Agr Univ, Coll Vet Med, Minist Agr, Key Lab Vet Vaccine Innovat, Guangzhou, Guangdong, Peoples R China
[2] Univ Hong Kong, Sch Publ Hlth, State Key Lab Emerging Infect Dis, Pokfulam, Hong Kong, Peoples R China
[3] Univ Hong Kong, Sch Publ Hlth, Influenza Res Ctr, Pokfulam, Hong Kong, Peoples R China
关键词
NEURAMINIDASE ACTIVITIES; STALK-LENGTH; HEMAGGLUTININ; ADAPTATION; REPLICATION; BINDING; SWINE; IDENTIFICATION; ENDONUCLEASE; EMERGENCE;
D O I
10.1128/JVI.01736-14
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
H6N6 viruses are commonly isolated from domestic ducks, and avian-to-swine transmissions of H6N6 viruses have been detected in China. Whether subsequent adaptation of H6N6 viruses in mammals would increase their pathogenicity toward humans is not known. To address this, we generated a mouse-adapted (MA) swine influenza H6N6 virus (A/swine/Guangdong/K6/ 2010 [GDK6-MA]) which exhibited greater virulence than the wild-type virus (GDK6). Amino acid substitutions in PB2 (E627K), PA (I38M), and hemagglutinin ([HA] L111F, H156N, and S263R) occurred in GDK6-MA. HA with the H156N mutation [HA(H156N)] resulted in enlarged plaque sizes on MDCK cells and enhanced early-stage viral replication in mammalian cells. PA(I38M) raised polymerase activity in vitro but did not change virus replication in either mammalian cells or mice. These single substitutions had only limited effects on virulence; however, a combination of HA(H156N S263R) with PA(I38M) in the GDK6 backbone led to a significantly more virulent variant. This suggests that these substitutions can compensate for the lack of PB2(627K) and modulate virulence, revealing a new determinant of pathogenicity for H6N6 viruses in mice, which might also pose a threat to human health. IMPORTANCE Avian H6N6 influenza viruses are enzootic in domestic ducks and have been detected in swine in China. Infections of mammals by H6N6 viruses raise the possibility of viral adaptation and increasing pathogenicity in the new hosts. To examine the molecular mechanisms of adaptation, a mouse-adapted avian-origin swine influenza H6N6 virus (GDK6-MA), which had higher virulence than its parental virus, was generated. Specific mutations were found in PB2 (E627K), PA (I38M), and HA (L111F, H156N, and S263R) and were assessed for their virulence in mice. The combination of HA(H156N S263R) and PA(I38M) compensated for the lack of PB2(627K) and showed increased pathogenicity in mice, revealing a novel mechanism that can affect the virulence of influenza viruses. H6N6 viruses should be monitored in the field for more virulent forms that could threaten human health.
引用
收藏
页码:14116 / 14125
页数:10
相关论文
共 44 条
[1]   Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture [J].
Baigent, SJ ;
McCauley, JW .
VIRUS RESEARCH, 2001, 79 (1-2) :177-185
[2]   REPLICATION OF AVIAN INFLUENZA-VIRUSES IN HUMANS [J].
BEARE, AS ;
WEBSTER, RG .
ARCHIVES OF VIROLOGY, 1991, 119 (1-2) :37-42
[3]   Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: Identification of functional themes [J].
Brown, EG ;
Liu, H ;
Kit, LC ;
Baird, S ;
Nesrallah, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (12) :6883-6888
[4]   BIOLOGIC IMPORTANCE OF NEURAMINIDASE STALK LENGTH IN INFLUENZA-A VIRUS [J].
CASTRUCCI, MR ;
KAWAOKA, Y .
JOURNAL OF VIROLOGY, 1993, 67 (02) :759-764
[5]   The Receptor Binding Specificity of the Live Attenuated Influenza H2 and H6 Vaccine Viruses Contributes to Vaccine Immunogenicity and Protection in Ferrets [J].
Chen, Zhongying ;
Zhou, Helen ;
Kim, Lomi ;
Jin, Hong .
JOURNAL OF VIROLOGY, 2012, 86 (05) :2780-2786
[6]   Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy [J].
Das, Suman R. ;
Hensley, Scott E. ;
David, Alexandre ;
Schmidt, Loren ;
Gibbs, James S. ;
Puigbo, Pere ;
Ince, William L. ;
Bennink, Jack R. ;
Yewdell, Jonathan W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (51) :E1417-E1422
[7]   The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit [J].
Dias, Alexandre ;
Bouvier, Denis ;
Crepin, Thibaut ;
McCarthy, Andrew A. ;
Hart, Darren J. ;
Baudin, Florence ;
Cusack, Stephen ;
Ruigrok, Rob W. H. .
NATURE, 2009, 458 (7240) :914-918
[8]   The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex [J].
Fodor, E ;
Smith, M .
JOURNAL OF VIROLOGY, 2004, 78 (17) :9144-9153
[9]   Characterization of a novel influenza a virus hemagglutinin subtype (H16) obtained from black-headed gulls [J].
Fouchier, RAM ;
Munster, V ;
Wallensten, A ;
Bestebroer, TM ;
Herfst, S ;
Smith, D ;
Rimmelzwaan, GF ;
Olsen, B ;
Osterhaus, ADME .
JOURNAL OF VIROLOGY, 2005, 79 (05) :2814-2822
[10]   Avian Influenza H6 Viruses Productively Infect and Cause Illness in Mice and Ferrets [J].
Gillim-Ross, Laura ;
Santos, Celia ;
Chen, Zhongying ;
Aspelund, Amy ;
Yang, Chin-Fen ;
Ye, Dan ;
Jin, Hong ;
Kemble, George ;
Subbarao, Kanta .
JOURNAL OF VIROLOGY, 2008, 82 (21) :10854-10863