An axiomatization of the Nash equilibrium concept

被引:1
|
作者
Voorneveld, Mark [1 ]
机构
[1] Stockholm Sch Econ, Dept Econ, Box 6501, S-11383 Stockholm, Sweden
关键词
Nash equilibrium; Axiomatization; Solution concept; GAMES;
D O I
10.1016/j.geb.2019.07.011
中图分类号
F [经济];
学科分类号
02 ;
摘要
For strategic games, the Nash equilibrium concept is axiomatized using three properties: (i) if the difference between two games is 'strategically irrelevant', then their solutions are the same; (ii) if a player has a strategy with a constant payoff, this player need not settle for less in any solution of the game; (iii) if all players agree that a certain strategy profile is optimal, then this strategy profile is a solution of the game. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:316 / 321
页数:6
相关论文
共 50 条
  • [22] Parameterized Two-Player Nash Equilibrium
    Hermelin, Danny
    Huang, Chien-Chung
    Kratsch, Stefan
    Wahlstroem, Magnus
    ALGORITHMICA, 2013, 65 (04) : 802 - 816
  • [23] Quasi-Transfer Continuity and Nash Equilibrium
    Nessah, Rabia
    Tazdait, Tarik
    INTERNATIONAL GAME THEORY REVIEW, 2019, 21 (04)
  • [24] Nash Embedding and Equilibrium in Pure Quantum States
    Khan, Faisal Shah
    Humble, Travis S.
    QUANTUM TECHNOLOGY AND OPTIMIZATION PROBLEMS, 2019, 11413 : 51 - 62
  • [25] Probably Approximately Correct Nash Equilibrium Learning
    Fele, Filiberto
    Margellos, Kostas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (09) : 4238 - 4245
  • [26] WHICH IS THE WORST-CASE NASH EQUILIBRIUM?
    Luecking, Thomas
    Mavronicolas, Marios
    Monien, Burkhard
    Spirakis, Paul g.
    Vrto, Imrich
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (02) : 1701 - 1732
  • [27] Facets of the Fully Mixed Nash Equilibrium Conjecture
    Feldmann, Rainer
    Mavronicolas, Marios
    Pieris, Andreas
    THEORY OF COMPUTING SYSTEMS, 2010, 47 (01) : 60 - 112
  • [28] On the variational equilibrium as a refinement of the generalized Nash equilibrium
    Kulkarni, Ankur A.
    Shanbhag, Uday V.
    AUTOMATICA, 2012, 48 (01) : 45 - 55
  • [29] Evidence equilibrium: Nash equilibrium in judgment processes
    Lin, Yong
    Xu, Jiaqing
    Makedon, Fillia
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (03) : 1533 - 1543
  • [30] Characterization of the existence of a pure-strategy Nash equilibrium
    Hou, Ji-Cheng
    APPLIED MATHEMATICS LETTERS, 2009, 22 (05) : 689 - 692