A uniqueness result for a semilinear parabolic system

被引:4
作者
Bokes, Pavol [1 ]
机构
[1] Comenius Univ, Dept Math Anal, Bratislava 84248, Slovakia
关键词
reaction-diffusion system; uniqueness;
D O I
10.1016/j.jmaa.2006.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for nonnegative, continuous, bounded and nonzero initial data we have a unique solution of the reaction-diffusion system described by three differential equations with non-Lipschitz nonlinearity. We also find the set of all nonnegative solutions of the system when the initial data is zero and in the last section we briefly discuss a generalization of the theorem to a system of n equations. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:567 / 584
页数:18
相关论文
共 10 条
[1]  
Aguirre J., 1987, ANN FS TOULOUSE MATH, V8, P175, DOI DOI 10.5802/AFST.637
[2]   BOUNDEDNESS AND BLOW UP FOR A SEMILINEAR REACTION DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :176-202
[3]   A UNIQUENESS RESULT FOR A SEMILINEAR REACTION-DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (01) :175-185
[4]   The blow-up rate for a semilinear parabolic system [J].
Fila, M ;
Quittner, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 238 (02) :468-476
[5]   ON UNIQUENESS AND NON-UNIQUENESS OF SOLUTIONS OF SOLUTIONS OF INITIAL VALUE PROBLEMS FOR SOME QUASI-LINEAR PARABOLIC EQUATIONS [J].
FUJITA, H ;
WATANABE, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1968, 21 (06) :631-&
[6]   NONUNIQUENESS FOR A SEMI-LINEAR INITIAL-VALUE PROBLEM [J].
HARAUX, A ;
WEISSLER, FB .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (02) :167-189
[7]   On uniqueness for a semilinear parabolic system coupled in an equation and a boundary condition [J].
Kordos, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) :655-666
[8]  
KORDOS M, 2004, ACTA MATH U COMENIAN, V73, P279
[9]  
Renclawowicz J., 2000, APPL MATH, V27, P203, DOI DOI 10.4064/am-27-2-203-218
[10]  
Renclawowicz J, 1998, APPL MATH WARSAW, V25, P313, DOI 10.4064/am-25-3-313-326