Adaptive Hierarchical Classification Networks

被引:0
作者
Nooka, Sai Prasad [1 ]
Chennupati, Sumanth [1 ]
Veerabhadra, Karthik [1 ]
Sah, Shagan [1 ]
Ptucha, Raymond [1 ]
机构
[1] Rochester Inst Technol, Rochester, NY 14623 USA
来源
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2016年
关键词
Hierarchy; Decomposition; Image Classification; Muli-layer Perceptron; Convolutional Neural Network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical decomposition enables increased number of classes in a classification problem. Class similarities guide the creation of a family of course to fine classifiers which solve categorical problems more effectively than a single flat classifier. High accuracies require precise configurations for each of the family of classifiers. This paper proposes a method to adaptively select the configuration of the hierarchical family of classifiers. Linkage statistics from overall and sub-classification confusion matrices define categorical groupings for an efficient and accurate classification framework. Depending on the number of classes and the complexity of the problem, an adaptive configuration manager chooses between a multi-layer perceptron or a deep convolutional neural network, then selects the complexity of each. Experiments on CalTech101, CalTech256, CIFAR100 and the ImageNet datasets demonstrate performance of adaptive hierarchical models on an image classification task.
引用
收藏
页码:3578 / 3583
页数:6
相关论文
共 39 条
[1]  
[Anonymous], 2013, ICML
[2]  
[Anonymous], 2013, Some improvements on deep convolutional neural network based image classification
[3]  
[Anonymous], 2013, P INT C NEUR INF PRO
[4]  
[Anonymous], 2013, Advances in Neural Information Processing Systems
[5]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[6]  
Chennupati V., 2016, ELECT IMAGING, V2016
[7]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[8]   Fast, Accurate Detection of 100,000 Object Classes on a Single Machine [J].
Dean, Thomas ;
Ruzon, Mark A. ;
Segal, Mark ;
Shlens, Jonathon ;
Vijayanarasimhan, Sudheendra ;
Yagnik, Jay .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :1814-1821
[9]  
Deng J., 2014, Computer Vision-ECCV 2014-13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I, P48
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848