PULLBACK ATTRACTORS FOR A CLASS OF NON-AUTONOMOUS THERMOELASTIC PLATE SYSTEMS

被引:7
作者
Bezerra, Flank D. M. [1 ]
Carbone, Vera L. [2 ]
Nascimento, Marcelo J. D. [2 ]
Schiabel, Karina [2 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2018年 / 23卷 / 09期
基金
巴西圣保罗研究基金会;
关键词
Pullback attractors; local existence; global existence; thermoelastic plate; non-autonomous system; DAMPED WAVE-EQUATIONS; VISCOELASTIC EQUATION; EXPONENTIAL STABILITY;
D O I
10.3934/dcdsb.2017214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the asymptotic behavior of solutions, in the sense of pullback attractors, of the evolution system {u(tt) + Delta(2)u + a(t)Delta theta = f(t,u), t > tau, x is an element of Omega, theta(t) + kappa Delta theta + a(t)Delta u(t) = 0, t > tau, x is an element of Omega, subject to boundary conditions u = Delta u= theta = 0, t > tau, x is an element of partial derivative Omega, where Omega is a bounded domain in R-N with N >= 2, which boundary partial derivative Omega is assumed to be a C-4-hypersurface, kappa > 0 is constant, a is an Holder continuous function and f is a dissipative nonlinearity locally Lipschitz in the second variable. Using the theory of uniform sectorial operators, in the sense of P. Sobolevskii ([23]), we give a partial description of the fractional power spaces scale for the thermoelastic plate operator and we show the local and global well-posedness of this non-autonomous problem. Furthermore we prove existence and uniform boundedness of pullback attractors.
引用
收藏
页码:3553 / 3571
页数:19
相关论文
共 24 条
[11]  
Carvalho A. N., 2013, APPL MATH SCI, V182
[12]   SINGULARLY NON-AUTONOMOUS SEMILINEAR PARABOLIC PROBLEMS WITH CRITICAL EXPONENTS [J].
Carvalho, Alexandre N. ;
Nascimento, Marcelo J. D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (03) :449-471
[13]   Local well posedness for strongly damped wave equations with critical nonlinearities [J].
Carvalho, AN ;
Cholewa, JW .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (03) :443-463
[14]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[15]  
CHEPYZHOV VV, 2002, AMS C PUBLICATIONS, V49
[16]   Global attractors for a semilinear hyperbolic equation in viscoelasticity [J].
Giorgi, C ;
Rivera, JEM ;
Pata, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) :83-99
[17]  
Henry D., 1981, Geometric theory of semilinear parabolic equations
[18]  
Lasiecka I., 1998, ESAIM: Proceedings, V4, P199, DOI [10.1051/proc:1998029, DOI 10.1051/PROC:1998029]
[19]  
Lasiecka I., 1998, ANN SCUOLA NORM SUP, V27, P457
[20]  
Liu Z., 1999, CRC RES NOTES MATH, V398