PULLBACK ATTRACTORS FOR A CLASS OF NON-AUTONOMOUS THERMOELASTIC PLATE SYSTEMS

被引:7
作者
Bezerra, Flank D. M. [1 ]
Carbone, Vera L. [2 ]
Nascimento, Marcelo J. D. [2 ]
Schiabel, Karina [2 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2018年 / 23卷 / 09期
基金
巴西圣保罗研究基金会;
关键词
Pullback attractors; local existence; global existence; thermoelastic plate; non-autonomous system; DAMPED WAVE-EQUATIONS; VISCOELASTIC EQUATION; EXPONENTIAL STABILITY;
D O I
10.3934/dcdsb.2017214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the asymptotic behavior of solutions, in the sense of pullback attractors, of the evolution system {u(tt) + Delta(2)u + a(t)Delta theta = f(t,u), t > tau, x is an element of Omega, theta(t) + kappa Delta theta + a(t)Delta u(t) = 0, t > tau, x is an element of Omega, subject to boundary conditions u = Delta u= theta = 0, t > tau, x is an element of partial derivative Omega, where Omega is a bounded domain in R-N with N >= 2, which boundary partial derivative Omega is assumed to be a C-4-hypersurface, kappa > 0 is constant, a is an Holder continuous function and f is a dissipative nonlinearity locally Lipschitz in the second variable. Using the theory of uniform sectorial operators, in the sense of P. Sobolevskii ([23]), we give a partial description of the fractional power spaces scale for the thermoelastic plate operator and we show the local and global well-posedness of this non-autonomous problem. Furthermore we prove existence and uniform boundedness of pullback attractors.
引用
收藏
页码:3553 / 3571
页数:19
相关论文
共 24 条
[1]   Long-time dynamics of an extensible plate equation with thermal memory [J].
Aguiar Barbosa, Alisson Rafael ;
Ma, To Fu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) :143-165
[2]  
Amann H., 1995, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,, V89
[3]   Exponential stability for a plate equation with p-Laplacian and memory terms [J].
Andrade, D. ;
Jorge Silva, M. A. ;
Ma, T. F. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (04) :417-426
[4]   Long-time behavior of a quasilinear viscoelastic equation with past history [J].
Araujo, Rawlilson de Oliveira ;
Ma, To Fu ;
Qin, Yuming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (10) :4066-4087
[5]   Almost periodic solutions to some semilinear non-autonomous thermoelastic plate equations [J].
Baroun, A. ;
Boulite, S. ;
Diagana, T. ;
Maniar, L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (01) :74-84
[6]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[7]   A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor [J].
Caraballo, Tomas ;
Carvalho, Alexandre N. ;
Langa, Jose A. ;
Rivero, Felipe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) :2272-2283
[8]   Existence of pullback attractors for pullback asymptotically compact processes [J].
Caraballo, Tomas ;
Carvalho, Alexandre N. ;
Langa, Jose A. ;
Rivero, Felipe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1967-1976
[9]  
Carbone VL, 2011, ELECTRON J DIFFER EQ
[10]   DAMPED WAVE EQUATIONS WITH FAST GROWING DISSIPATIVE NONLINEARITIES [J].
Carvalho, A. N. ;
Cholewa, J. W. ;
Dlotko, Tomasz .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) :1147-1165