Weil descent of Jacobians

被引:10
作者
Galbraith, SD [1 ]
机构
[1] Univ London Royal Holloway & Bedford New Coll, Dept Math, Egham TW20 0EX, Surrey, England
关键词
D O I
10.1016/S0166-218X(02)00443-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The technique of Weil restriction of scalars has significant implications for elliptic curve cryptography. In this paper we apply these ideas to the case of the discrete logarithm problem in the Jacobian of a curve of genus greater than one over a finite field F(q)n where n > 1. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 14 条
[1]  
ADLEMAN L, 1994, LECT NOTES COMPUTER, V877
[2]  
DIEM C, 2001, GHS ATTACK ODD CHARA
[3]  
Duursma I, 1999, LECT NOTES COMPUT SC, V1716, P103
[4]  
FLASSENBERG R, 1997, EXP MATH, V8, P339
[5]  
FREY G, 1998, HOW DISGUISE ELLIPTI
[6]  
Galbraith SD, 2001, PUBLIC-KEY CRYPTOGRAPHY AND COMPUTATIONAL NUMBER THEORY, P59
[7]  
Galbraith SD, 1999, LECT NOTES COMPUT SC, V1746, P191
[8]   Constructive and destructive facets of Weil descent on elliptic curves [J].
Gaudry, P ;
Hess, F ;
Smart, NR .
JOURNAL OF CRYPTOLOGY, 2002, 15 (01) :19-46
[9]  
Gaudry P, 2000, LECT NOTES COMPUT SC, V1807, P19
[10]  
Gunther C., 2001, LNCS, V2012, P106