Screen technical noise in single cell RNA sequencing data

被引:6
作者
Bai, Yu-Long [1 ]
Baddoo, Melody [2 ]
Flemington, Erik K. [2 ]
Nakhoul, Hani N. [2 ]
Liu, Yao-Zhong [1 ]
机构
[1] Tulane Univ, Sch Publ Hlth & Trop Med, Dept Global Biostat & Data Sci, 1440 Canal St,Suite 1610, New Orleans, LA 70112 USA
[2] Tulane Univ, Hlth Sci Ctr, Tulane Canc Ctr, Dept Pathol, New Orleans, LA 70118 USA
基金
美国国家科学基金会;
关键词
Single cell RNA-seq; Next generation sequencing; QC; Housekeeping genes; SCQC; ESTABLISHMENT;
D O I
10.1016/j.ygeno.2019.02.014
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We proposed a data cleaning pipeline for single cell (SC) RNA-seq data, where we first screen genes (gene-wise screening) followed by screening cell libraries (library-wise screening). Gene-wise screening is based on the expectation that for a gene with a low technical noise, a gene's count in a library will tend to increase with the increase of library size, which was tested using negative binomial regression of gene count (as dependent variable) against library size (as independent variable). Library-wise screening is based on the expectation that across-library correlations for housekeeping (HK) genes is expected to be higher than the correlations for nonhousekeeping (NHK) genes in those libraries with low technical noise. We removed those libraries, whose mean pairwise correlation for HK genes is NOT significantly higher than that for NHK genes. We successfully applied the pipeline to two large SC RNA-seq datasets. The pipeline was also developed into an R package.
引用
收藏
页码:346 / 355
页数:10
相关论文
共 18 条
  • [11] 2-G
  • [12] Computational and analytical challenges in single-cell transcriptomics
    Stegle, Oliver
    Teichmann, Sarah A.
    Marioni, John C.
    [J]. NATURE REVIEWS GENETICS, 2015, 16 (03) : 133 - 145
  • [13] Svensson V., 2017, 170401379 ARXIV
  • [14] Tang FC, 2009, NAT METHODS, V6, P377, DOI [10.1038/NMETH.1315, 10.1038/nmeth.1315]
  • [15] Quantitative assessment of single-cell RNRNA-sequencing methods
    Wu, Angela R.
    Neff, Norma F.
    Kalisky, Tomer
    Dalerba, Piero
    Treutlein, Barbara
    Rothenberg, Michael E.
    Mburu, Francis M.
    Mantalas, Gary L.
    Sim, Sopheak
    Clarke, Michael F.
    Quake, Stephen R.
    [J]. NATURE METHODS, 2014, 11 (01) : 41 - +
  • [16] Massively parallel digital transcriptional profiling of single cells
    Zheng, Grace X. Y.
    Terry, Jessica M.
    Belgrader, Phillip
    Ryvkin, Paul
    Bent, Zachary W.
    Wilson, Ryan
    Ziraldo, Solongo B.
    Wheeler, Tobias D.
    McDermott, Geoff P.
    Zhu, Junjie
    Gregory, Mark T.
    Shuga, Joe
    Montesclaros, Luz
    Underwood, Jason G.
    Masquelier, Donald A.
    Nishimura, Stefanie Y.
    Schnall-Levin, Michael
    Wyatt, Paul W.
    Hindson, Christopher M.
    Bharadwaj, Rajiv
    Wong, Alexander
    Ness, Kevin D.
    Beppu, Lan W.
    Deeg, H. Joachim
    McFarland, Christopher
    Loeb, Keith R.
    Valente, William J.
    Ericson, Nolan G.
    Stevens, Emily A.
    Radich, Jerald P.
    Mikkelsen, Tarjei S.
    Hindson, Benjamin J.
    Bielas, Jason H.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [17] Next-generation molecular diagnosis: single-cell sequencing from bench to bedside
    Zhu, Wanjun
    Zhang, Xiao-Yan
    Marjani, Sadie L.
    Zhang, Jialing
    Zhang, Wengeng
    Wu, Shixiu
    Pan, Xinghua
    [J]. CELLULAR AND MOLECULAR LIFE SCIENCES, 2017, 74 (05) : 869 - 880
  • [18] Comparative Analysis of Single-Cell RNA Sequencing Methods
    Ziegenhain, Christoph
    Vieth, Beate
    Parekh, Swati
    Reinius, Bjorn
    Guillaumet-Adkins, Amy
    Smets, Martha
    Leonhardt, Heinrich
    Heyn, Holger
    Hellmann, Ines
    Enard, Wolfgang
    [J]. MOLECULAR CELL, 2017, 65 (04) : 631 - +