Decoupling for Perturbed Cones and the Mean Square of |ζ(1/2+it)|

被引:11
作者
Bourgain, Jean [1 ]
Watt, Nigel [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
EXPONENTIAL-SUMS;
D O I
10.1093/imrn/rnx009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An improved estimate is obtained for the mean square of the modulus of the zeta function on the critical line. It is based on the decoupling techniques in harmonic analysis developed in [3].
引用
收藏
页码:5219 / 5296
页数:78
相关论文
共 12 条
[1]   On the multilinear restriction and Kakeya conjectures [J].
Bennett, Jonathan ;
Carbery, Anthony ;
Tao, Terence .
ACTA MATHEMATICA, 2006, 196 (02) :261-302
[2]   DECOUPLING, EXPONENTIAL SUMS AND THE RIEMANN ZETA FUNCTION [J].
Bourgain, J. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (01) :205-224
[3]   The proof of the l2 Decoupling Conjecture [J].
Bourgain, Jean ;
Demeter, Ciprian .
ANNALS OF MATHEMATICS, 2015, 182 (01) :351-389
[4]   BOUNDS ON OSCILLATORY INTEGRAL OPERATORS BASED ON MULTILINEAR ESTIMATES [J].
Bourgain, Jean ;
Guth, Larry .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (06) :1239-1295
[5]  
Graham S., 1991, Van Der Corput'S Method of Exponential Sums, V126
[6]  
HEATHBROWN DR, 1990, P LOND MATH SOC, V61, P227
[7]  
Huxley M. N., 2004, FUNCTIONES APPROXIMA, V32, P7
[8]  
Huxley M. N., 1996, Area, Lattice points, and Exponential sums, V13
[9]   Exponential sums and the Riemann zeta function V [J].
Huxley, MN .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 90 :1-41
[10]   Exponential sums and lattice points III [J].
Huxley, MN .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 :591-609