Recursive Feature Elimination for Machine Learning-based Landslide Prediction Models

被引:5
作者
Munasinghe, Kusala [1 ]
Karunanayake, Piyumika [2 ]
机构
[1] Sri Lanka Technol Campus, Sch Engn & Technol, Padukka, Sri Lanka
[2] Gen Sir John Kotelawala Def Univ, Dept Elect Elect & Telecommun Engn, Ratmalana, Sri Lanka
来源
3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021) | 2021年
关键词
Landslide prediction; machine learning; recursive feature elimination; SUSCEPTIBILITY;
D O I
10.1109/ICAIIC51459.2021.9415232
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a landslide prediction model which uses the recursive feature elimination method. which is one of the key feature selection methods in machine learning that s not tested yet for landslide prediction related applications. The model is tested with the landslide inventories of two landslide-prone areas. The results show that the proposed model achieves an average accuracy of 91.15% and a sensitivity of 83.4% predicting the possibility for a landslide. The findings of this research paper imply that recursive feature elimination can also he effective') used in landslide predictions since it achieves high accuracy.
引用
收藏
页码:126 / 129
页数:4
相关论文
共 50 条
  • [31] Nonlinear Prediction of Landslide Stability Based on Machine Learning
    Zhang T.
    Wu T.
    Wang L.
    Zhang Z.
    Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal of China University of Geosciences, 2023, 48 (05): : 1989 - 1999
  • [32] Landslide Prediction with Machine Learning and Time Windows
    Guerrero-Rodriguez, Byron
    Garcia-Rodriguez, Jose
    Salvador, Jaime
    Mejia-Escobar, Christian
    Bonifaz, Michelle
    Gallardo, Oswaldo
    BIO-INSPIRED SYSTEMS AND APPLICATIONS: FROM ROBOTICS TO AMBIENT INTELLIGENCE, PT II, 2022, 13259 : 193 - 202
  • [33] Machine Learning-Based Models for Intracerebral Hemorrhage In-Hospital Mortality Prediction
    Bako, Abdulaziz T.
    Vahidy, Farhaan S.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2025, 14 (05):
  • [34] Link Prediction in Complex Networks Using Recursive Feature Elimination and Stacking Ensemble Learning
    Wang, Tao
    Jiao, Mengyu
    Wang, Xiaoxia
    ENTROPY, 2022, 24 (08)
  • [35] Performance tuning for machine learning-based software development effort prediction models
    Ertugrul, Egemen
    Baytar, Zakir
    Catal, Cagatay
    Muratli, Can
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2019, 27 (02) : 1308 - 1324
  • [36] New machine learning-based prediction models for fracture energy of asphalt mixtures
    Majidifard, Hamed
    Jahangiri, Behnam
    Buttlar, William G.
    Alavi, Amir H.
    MEASUREMENT, 2019, 135 : 438 - 451
  • [37] Machine learning-based cache miss prediction
    Jelacic, Edin
    Seceleanu, Cristina
    Xiong, Ning
    Backeman, Peter
    Yaghoobi, Sharifeh
    Seceleanu, Tiberiu
    INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2025, : 53 - 80
  • [38] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42
  • [39] Machine Learning-Based Prediction of Air Quality
    Liang, Yun-Chia
    Maimury, Yona
    Chen, Angela Hsiang-Ling
    Juarez, Josue Rodolfo Cuevas
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [40] A Machine Learning-Based Wrapper Method for Feature Selection
    Patel, Damodar
    Saxena, Amit
    Wang, John
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2024, 20 (01)