MDTP: A Multi-source Deep Traffic Prediction Framework over Spatio-Temporal Trajectory Data

被引:25
|
作者
Fang, Ziquan [1 ]
Pan, Lu [1 ]
Chen, Lu [1 ]
Du, Yuntao [1 ]
Gao, Yunjun [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou, Peoples R China
[2] Alibaba Zhejiang Univ Joint Inst Frontier Technol, Hangzhou, Peoples R China
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2021年 / 14卷 / 08期
关键词
FLOW PREDICTION;
D O I
10.14778/3457390.3457394
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic prediction has drawn increasing attention for its ubiquitous real-life applications in traffic management, urban computing, public safety, and so on. Recently, the availability of massive trajectory data and the success of deep learning motivate a plethora of deep traffic prediction studies. However, the existing neural-network-based approaches tend to ignore the correlations between multiple types of moving objects located in the same spatio-temporal traffic area, which is suboptimal for traffic prediction analytics. In this paper, we propose a multi-source deep traffic prediction framework over spatio-temporal trajectory data, termed as MDTP. The framework includes two phases: spatio-temporal feature modeling and multi-source bridging. We present an enhanced graph convolutional network (GCN) model combined with long short-term memory network (LSTM) to capture the spatial dependencies and temporal dynamics of traffic in the feature modeling phase. In the multi-source bridging phase, we propose two methods, Sum and Concat, to connect the learned features from different trajectory data sources. Extensive experiments on two real-life datasets show that MDTP i) has superior efficiency, compared with classical time-series methods, machine learning methods, and state-of-the-art neural-network-based approaches; ii) offers a significant performance improvement over the single-source traffic prediction approach; and iii) performs traffic predictions in seconds even on tens of millions of trajectory data. we develop MDTP+, a user-friendly interactive system to demonstrate traffic prediction analysis.
引用
收藏
页码:1289 / 1297
页数:9
相关论文
共 50 条
  • [11] Spatio-temporal deep learning framework for pedestrian intention prediction in urban traffic scenes
    Monika
    Singh, Pardeep
    Chand, Satish
    AI COMMUNICATIONS, 2024, 37 (04) : 549 - 562
  • [12] An Improved Multi-Source Data-Driven Landslide Prediction Method Based on Spatio-Temporal Knowledge Graph
    Chen, Luanjie
    Ge, Xingtong
    Yang, Lina
    Li, Weichao
    Peng, Ling
    REMOTE SENSING, 2023, 15 (08)
  • [13] A novel framework for spatio-temporal prediction of environmental data using deep learning
    Federico Amato
    Fabian Guignard
    Sylvain Robert
    Mikhail Kanevski
    Scientific Reports, 10
  • [14] A novel framework for spatio-temporal prediction of environmental data using deep learning
    Amato, Federico
    Guignard, Fabian
    Robert, Sylvain
    Kanevski, Mikhail
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [15] GeoCube: A spatio-temporal cube toward massive and multi-source EO data analysis
    Gao F.
    Yue P.
    Jiang L.
    Cao Z.
    Liang Z.
    Shangguan B.
    Hu L.
    Zhao S.
    National Remote Sensing Bulletin, 2022, 26 (06) : 1051 - 1066
  • [16] A multi-source spatio-temporal data cube for large-scale geospatial analysis
    Gao, Fan
    Yue, Peng
    Cao, Zhipeng
    Zhao, Shuaifeng
    Shangguan, Boyi
    Jiang, Liangcun
    Hu, Lei
    Fang, Zhe
    Liang, Zheheng
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2022, 36 (09) : 1853 - 1884
  • [17] Urban Multi-Source Spatio-Temporal Data Analysis Aware Knowledge Graph Embedding
    Zhao, Ling
    Deng, Hanhan
    Qiu, Linyao
    Li, Sumin
    Hou, Zhixiang
    Sun, Hai
    Chen, Yun
    SYMMETRY-BASEL, 2020, 12 (02):
  • [18] Traffic Accident Prediction Based on Deep Spatio-temporal Analysis
    Yu, Le
    Du, Bowen
    Hu, Xiao
    Sun, Leilei
    Lv, Weifeng
    Huang, Runhe
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 995 - 1002
  • [19] Spatio-Temporal Attention-Based Deep Learning Framework for Mesoscale Eddy Trajectory Prediction
    Wang, Xuegong
    Li, Chong
    Wang, Xinning
    Tan, Lining
    Wu, Jin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3853 - 3867
  • [20] Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning
    Pan, Zheyi
    Liang, Yuxuan
    Wang, Weifeng
    Yu, Yong
    Zheng, Yu
    Zhang, Junbo
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1720 - 1730