Heat flow, BMO, and the compactness of Toeplitz operators

被引:29
作者
Bauer, W. [1 ]
Coburn, L. A. [2 ]
Isralowitz, J. [2 ]
机构
[1] Ernst Moritz Arndt Univ Greifswald, Inst Math & Informat, D-17489 Greifswald, Germany
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
关键词
Berezin-Toeplitz operator; Compact operators; Berezin transform; Segal-Bargmann space; HANKEL-OPERATORS;
D O I
10.1016/j.jfa.2010.03.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that the Berezin-Toeplitz operator T-g is compact or in the Schatten class S-p of the Segal-Bargmann space for 1 <= p < infinity whenever <(g)over tilde>((s)) is an element of C-0 (C-n) (vanishes at infinity) or (g) over tilde)((s)) is an element of L-p (C-n, dv), respectively, for some s with 0 <s < 1/4, where (g) over tilde ((s)) is the heat transform of g on C-n. Moreover, we show that compactness of T-g implies that (g) over tilde ((s)) is in Co(C-n) for all s > 1/4 and use this to show that, for g is an element of BMO1 (C-n), we have (g) over tilde ((s)) is in C-0(C-n) for some s > 0 only if (g) over tilde ((s)) is in C-0(C-n) for all s > 0. This "backwards heat flow" result seems to be unknown for g is an element of BMO1 and even g is an element of L-infinity. Finally, we show that our compactness and vanishing "backwards heat flow" results hold in the context of the weighted Bergman space L-a(2) (B-n, dv(alpha)), where the "heat flow" (g) over tilde ((s)) is replaced by the Berezin transform B-alpha(g) on L-a(2) (B-n, dv(alpha)) for alpha > -1. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:57 / 78
页数:22
相关论文
共 34 条
[1]  
[Anonymous], INTEGRAL EQUATIONS O
[2]  
[Anonymous], 2007, MATH SURVEYS MONOGRA
[3]  
Axler S, 1998, INDIANA U MATH J, V47, P387
[5]   Mean oscillation and Hankel operators on the Segal-Bargmann space [J].
Bauer, V .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 52 (01) :1-15
[6]   Hilbert-Schmidt Hankel operators on the Segal-Bargmann space [J].
Bauer, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (10) :2989-2996
[7]  
Bauer W., 2008, TOKYO J MATH, V31, P293
[8]   Compact operators and the pluriharmonic Berezin transform [J].
Bauer, Wolfram ;
Furutani, Kenro .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (06) :645-669
[9]   Berezin-Toeplitz quantization and composition formulas [J].
Bauer, Wolfram .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (10) :3107-3142
[10]  
Berezin F. A., 1974, USSR IZV, V8, P1109, DOI [10.1070/IM1974v008n05ABEH002140, DOI 10.1070/IM1974V008N05ABEH002140]