On Classical Solutions for Viscous Polytropic Fluids with Degenerate Viscosities and Vacuum

被引:32
作者
Li, Yachun [1 ,2 ]
Pan, Ronghua [3 ]
Zhu, Shengguo [4 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, SHL MAC, Shanghai 200240, Peoples R China
[3] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
[4] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[5] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
NAVIER-STOKES EQUATIONS; SHALLOW-WATER EQUATIONS; GLOBAL WEAK SOLUTIONS; SMOOTH SOLUTIONS; WELL-POSEDNESS; CAUCHY-PROBLEM; BLOW-UP; EULER EQUATIONS; LOCAL EXISTENCE; KORTEWEG;
D O I
10.1007/s00205-019-01412-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the three-dimensional isentropic Navier-Stokes equations for compressible fluids allowing initial vacuum when viscosities depend on density in a superlinear power law. We introduce the notion of regular solutions and prove the local-in-time well-posedness of solutions with arbitrarily large initial data and a vacuum in this class, which is a long-standing open problem due to the very high degeneracy caused by a vacuum. Moreover, for certain classes of initial data with a local vacuum, we show that the regular solution that we obtained will break down in finite time, no matter how small and smooth the initial data are.
引用
收藏
页码:1281 / 1334
页数:54
相关论文
共 47 条
[1]   Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids [J].
Boldrini, JL ;
Rojas-Medar, MA ;
Fernández-Cara, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (11) :1499-1525
[2]   Some diffusive capillary models of Korteweg type [J].
Bresch, D ;
Desjardins, B .
COMPTES RENDUS MECANIQUE, 2004, 332 (11) :881-886
[3]   Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model [J].
Bresch, D ;
Desjardins, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) :211-223
[4]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[5]  
Bresch D., 2006, ADV MATH FLUID MECH, P15
[6]   On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids [J].
Bresch, Didier ;
Desjardins, Benoit .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (01) :57-90
[7]  
Chapman S., 1990, Thermal Conduction and Diffusion in Gases
[8]   Unique solvability of the initial boundary value problems for compressible viscous fluids [J].
Cho, Y ;
Choe, HJ ;
Kim, H .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02) :243-275
[9]   Blow-up of viscous heat-conducting compressible flows [J].
Cho, YG ;
Jin, BJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) :819-826
[10]   On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities [J].
Cho, YG ;
Kim, H .
MANUSCRIPTA MATHEMATICA, 2006, 120 (01) :91-129