Tunable magnetocaloric effect around hydrogen liquefaction temperature in Tb1-xYxCoC2 compounds

被引:1
|
作者
Xie, Z. G. [1 ]
Li, B.
Li, J.
Geng, D. Y.
Zhang, Z. D.
机构
[1] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
Curie temperature; Magnetocaloric effect; Magnetic properties; AC SUSCEPTIBILITY;
D O I
10.1016/j.physb.2010.01.120
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The magnetic properties and magnetocaloric effect of Tb1-xYxCoC2 (x = 0, 0.1, 0.2, 0.3, 0.4) compounds have been investigated systematically. All the compounds undergo second-order transitions from paramagnetic to ferromagnetic states without thermal and magnetic hysteresis. With increasing Y content from 0 to 0.4, the Curie temperatures decrease nearly linearly from 28 to 18 K. The nature of the second-order phase transitions can be confirmed by Arrott plots. For Tb0.6Y0.4CoC2 compound, the maximum value of the magnetic entropy change -Delta S-M at 20 K is 9.35 J kg(-1) K-1 for an external field change of 5T (5.14 J kg(-1) K-1 for 2T). The large reversible magnetic entropy change makes Tb0.6Y04CoC2 compound an attractive candidate for the application at hydrogen liquefaction temperature. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2133 / 2136
页数:4
相关论文
共 50 条
  • [1] Tuning magnetocaloric effect of Ho1-xGdxNi2 and HoNi2-yCoy alloys around hydrogen liquefaction temperature
    Lai, Jiawei
    Tang, Xin
    Sepehri-Amin, Hossein
    Hono, Kazuhiro
    SCRIPTA MATERIALIA, 2020, 188 (188) : 302 - 306
  • [2] MAGNETOCALORIC EFFECT ON Tb1-xYxCO2 COMPOUNDS
    Bezergheanu, A.
    Souca, G.
    Mican, S.
    Dudric, R.
    Deac, I. G.
    Tetean, R.
    ROMANIAN JOURNAL OF PHYSICS, 2018, 63 (9-10):
  • [3] α-MnO2 Nanorods' Magnetocaloric Effect for Hydrogen Liquefaction
    Hamad, Mahmoud A.
    Alamri, Hatem R.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2022, 35 (02) : 515 - 518
  • [4] α-MnO2 Nanorods’ Magnetocaloric Effect for Hydrogen Liquefaction
    Mahmoud A. Hamad
    Hatem R. Alamri
    Journal of Superconductivity and Novel Magnetism, 2022, 35 : 515 - 518
  • [5] Tunable magnetocaloric effect in RTi1-xMoxGe (R=Tb,Er) (x=0,0.15) compounds
    Nirmala, R.
    Malik, S. K.
    EPL, 2007, 80 (02)
  • [6] Renormalisation of the Neel temperature and magnetocaloric effect in Tb2Agln
    Neumann, KU
    Crangle, J
    Parsons, MJ
    Taylor, JW
    Ouladdiaf, B
    Kanomata, T
    Mitamura, H
    Ishikawa, F
    Goto, T
    Dennis, B
    Ziebeck, KRA
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 251 (02) : 186 - 195
  • [7] Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature
    de Castro, Pedro Baptista
    Terashima, Kensei
    Yamamoto, Takafumi D.
    Hou, Zhufeng
    Iwasaki, Suguru
    Matsumoto, Ryo
    Adachi, Shintaro
    Saito, Yoshito
    Song, Peng
    Takeya, Hiroyuki
    Takano, Yoshihiko
    NPG ASIA MATERIALS, 2020, 12 (01)
  • [8] Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature
    Pedro Baptista de Castro
    Kensei Terashima
    Takafumi D Yamamoto
    Zhufeng Hou
    Suguru Iwasaki
    Ryo Matsumoto
    Shintaro Adachi
    Yoshito Saito
    Peng Song
    Hiroyuki Takeya
    Yoshihiko Takano
    NPG Asia Materials, 2020, 12
  • [9] Tunable magnetism and large inverse magnetocaloric effect in Shastry-Sutherland compounds Tb2Be2Si1-χGeχO7 (0 ≤ x ≤ 1)
    Song, Fangyuan
    Gao, Yuxia
    Liu, Andi
    Xu, Longmeng
    Ashtar, Malik
    Tian, Zhaoming
    Yuan, Songliu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [10] Magnetocaloric effect in (Tb1-zDyz)Co2
    de Oliveira, N. A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (14) : E150 - E152