Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering

被引:39
作者
Arazoe, Takayuki [1 ]
Kondo, Akihiko [2 ,3 ]
Nishida, Keiji [2 ]
机构
[1] Tokyo Univ Sci, Dept Appl Biol Sci, 2641 Yamazaki, Noda, Chiba 2788510, Japan
[2] Technol & Innovat Kobe Univ, Grad Sch Sci, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6578501, Japan
[3] Kobe Univ, Grad Sch Engn, Dept Chem Sci & Engn, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6578501, Japan
关键词
base editing; CRISPR; Cas9; genome editing; metabolic engineering; microbial engineering; BACTERIAL GENE-EXPRESSION; ESCHERICHIA-COLI GENOME; STAPHYLOCOCCUS-AUREUS; CLOSTRIDIUM-BEIJERINCKII; GUIDE-RNA; E; COLI; CRISPR; BASE; DNA; RECOMBINATION;
D O I
10.1002/biot.201700596
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Since the emergence of programmable RNA-guided nucleases based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems, genome editing technologies have become a simplified and versatile tool for genome editing in various organisms and cell types. Although genome editing enables efficient genome manipulations, such as gene disruptions, gene knockins, and chromosomal translocations via DNA double-strand break (DSB) repair in eukaryotes, DSBs induced by the CRISPR/Cas system are lethal or severely toxic to many microorganisms. Therefore, in many prokaryotes, including industrially useful microbes, the CRISPR/Cas system is often used as a negative selection component in combination with recombineering or other related strategies. Novel and revolutionary technologies have been recently developed to re-write targeted nucleotides (C:G to T:A and A:T to G:C) without DSBs and donor DNA templates. These technologies rely on the recruitment of deaminases at specific target loci using the nuclease-deficient CRISPR/Cas system. Here, the authors review and compare CRISPR-based genome editing, current base editing platforms and their spectra. The authors discuss how these technologies can be applied in various aspects of microbial metabolic engineering to overcome barriers to cellular regulation in prokaryotes.
引用
收藏
页数:12
相关论文
共 129 条
  • [81] Engineering Cellular Metabolism
    Nielsen, Jens
    Keasling, Jay D.
    [J]. CELL, 2016, 164 (06) : 1185 - 1197
  • [82] Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
    Nishida, Keiji
    Arazoe, Takayuki
    Yachie, Nozomu
    Banno, Satomi
    Kakimoto, Mika
    Tabata, Mayura
    Mochizuki, Masao
    Miyabe, Aya
    Araki, Michihiro
    Hara, Kiyotaka Y.
    Shimatani, Zenpei
    Kondo, Akihiko
    [J]. SCIENCE, 2016, 353 (6305)
  • [83] CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
    Oh, Jee-Hwan
    van Pijkeren, Jan-Peter
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (17)
  • [84] Targeted Base Editing via RNA-Guided Cytidine Deaminases in Xenopus laevis Embryos
    Park, Dong-Seok
    Yoon, Mijung
    Kweon, Jiyeon
    Jang, An-Hee
    Kim, Yongsub
    Choi, Sun-Cheol
    [J]. MOLECULES AND CELLS, 2017, 40 (11) : 823 - 827
  • [85] Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli
    Pyne, Michael E.
    Moo-Young, Murray
    Chung, Duane A.
    Chou, C. Perry
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (15) : 5103 - 5114
  • [86] Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression
    Qi, Lei S.
    Larson, Matthew H.
    Gilbert, Luke A.
    Doudna, Jennifer A.
    Weissman, Jonathan S.
    Arkin, Adam P.
    Lim, Wendell A.
    [J]. CELL, 2013, 152 (05) : 1173 - 1183
  • [87] Ran F. A., 2017, NATURE, V530, P186
  • [88] Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery
    Rees, Holly A.
    Komor, Alexis C.
    Yeh, Wei-Hsi
    Caetano-Lopes, Joana
    Warman, Matthew
    Edge, Albert S. B.
    Liu, David R.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [89] Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform
    Rock, Jeremy M.
    Hopkins, Forrest F.
    Chavez, Alejandro
    Diallo, Marieme
    Chase, Michael R.
    Gerrick, Elias R.
    Pritchard, Justin R.
    Church, George M.
    Rubin, Eric J.
    Sassetti, Christopher M.
    Schnappinger, Dirk
    Fortune, Sarah M.
    [J]. NATURE MICROBIOLOGY, 2017, 2 (04):
  • [90] CRMAGE: CRISPR Optimized MAGE Recombineering
    Ronda, Carlotta
    Pedersen, Lasse Ebdrup
    Sommer, Morten O. A.
    Nielsen, Alex Toftgaard
    [J]. SCIENTIFIC REPORTS, 2016, 6