Bounds on Entanglement-Assisted Source-Channel Coding via the Lovasz ν Number and Its Variants

被引:22
作者
Cubitt, Toby [1 ]
Mancinska, Laura [2 ,3 ]
Roberson, David E. [4 ,5 ]
Severini, Simone [6 ,7 ]
Stahlke, Dan [8 ]
Winter, Andreas [9 ,10 ]
机构
[1] Univ Complutense Madrid, Math & Quantum Informat Theory Grp, Dept Anal Matemat, Fac Ciencias Matemat, E-28040 Madrid, Spain
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 119077, Singapore
[4] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 639798, Singapore
[6] UCL, Dept Comp Sci, London WC1E 6BT, England
[7] UCL, Dept Phys & Astron, London WC1E 6BT, England
[8] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[9] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[10] Univ Autonoma Barcelona, Inst Catalana Recerca & Estudis Avancats, E-08193 Barcelona, Spain
基金
欧洲研究理事会; 新加坡国家研究基金会; 美国国家科学基金会;
关键词
Graph theory; quantum entanglement; quantum information; zero-error information theory; linear programming; SHANNON CAPACITY; CHROMATIC NUMBER; DELSARTE;
D O I
10.1109/TIT.2014.2349502
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study zero-error entanglement-assisted source-channel coding (communication in the presence of side information). Adapting a technique of Beigi, we show that such coding requires existence of a set of vectors satisfying orthogonality conditions related to suitably defined graphs G and H. Such vectors exist if and only if nu((G) over bar) <= nu((H) over bar), where nu represents the Lovasz number. We also obtain similar inequalities for the related Schrijver nu(-) and Szegedy nu(+) numbers. These inequalities reproduce several known bounds and also lead to new results. We provide a lower bound on the entanglement-assisted cost rate. We show that the entanglement-assisted independence number is bounded by the Schrijver number: alpha*(G) <= nu(-)(G). Therefore, we are able to disprove the conjecture that the one-shot entanglement-assisted zero-error capacity is equal to the integer part of the Lovasz number. Beigi introduced a quantity beta as an upper bound on a* and posed the question of whether beta(G) = right perpendicular nu(G)left perpendicular. We answer this in the affirmative and show that a related quantity is equal to inverted right perpendicular nu(G)inverted left perpendicular. We show that a quantity chi(vect)(G) recently introduced in the context of Tsirelson's problem is equal to inverted right perpendicular nu+((G) over bar )inverted left perpendicular. In an appendix, we investigate multiplicativity properties of Schrijver's and Szegedy's numbers, as well as projective rank.
引用
收藏
页码:7330 / 7344
页数:15
相关论文
共 32 条
[31]  
Szegedy M., 1994, Proceedings. 35th Annual Symposium on Foundations of Computer Science (Cat. No.94CH35717), P36, DOI 10.1109/SFCS.1994.365707
[32]   ZERO-ERROR SIDE INFORMATION PROBLEM AND CHROMATIC NUMBERS [J].
WITSENHAUSEN, HS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (05) :592-593