Bounds on Entanglement-Assisted Source-Channel Coding via the Lovasz ν Number and Its Variants

被引:21
作者
Cubitt, Toby [1 ]
Mancinska, Laura [2 ,3 ]
Roberson, David E. [4 ,5 ]
Severini, Simone [6 ,7 ]
Stahlke, Dan [8 ]
Winter, Andreas [9 ,10 ]
机构
[1] Univ Complutense Madrid, Math & Quantum Informat Theory Grp, Dept Anal Matemat, Fac Ciencias Matemat, E-28040 Madrid, Spain
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 119077, Singapore
[4] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 639798, Singapore
[6] UCL, Dept Comp Sci, London WC1E 6BT, England
[7] UCL, Dept Phys & Astron, London WC1E 6BT, England
[8] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[9] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[10] Univ Autonoma Barcelona, Inst Catalana Recerca & Estudis Avancats, E-08193 Barcelona, Spain
基金
新加坡国家研究基金会; 欧洲研究理事会; 美国国家科学基金会;
关键词
Graph theory; quantum entanglement; quantum information; zero-error information theory; linear programming; SHANNON CAPACITY; CHROMATIC NUMBER; DELSARTE;
D O I
10.1109/TIT.2014.2349502
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study zero-error entanglement-assisted source-channel coding (communication in the presence of side information). Adapting a technique of Beigi, we show that such coding requires existence of a set of vectors satisfying orthogonality conditions related to suitably defined graphs G and H. Such vectors exist if and only if nu((G) over bar) <= nu((H) over bar), where nu represents the Lovasz number. We also obtain similar inequalities for the related Schrijver nu(-) and Szegedy nu(+) numbers. These inequalities reproduce several known bounds and also lead to new results. We provide a lower bound on the entanglement-assisted cost rate. We show that the entanglement-assisted independence number is bounded by the Schrijver number: alpha*(G) <= nu(-)(G). Therefore, we are able to disprove the conjecture that the one-shot entanglement-assisted zero-error capacity is equal to the integer part of the Lovasz number. Beigi introduced a quantity beta as an upper bound on a* and posed the question of whether beta(G) = right perpendicular nu(G)left perpendicular. We answer this in the affirmative and show that a related quantity is equal to inverted right perpendicular nu(G)inverted left perpendicular. We show that a quantity chi(vect)(G) recently introduced in the context of Tsirelson's problem is equal to inverted right perpendicular nu+((G) over bar )inverted left perpendicular. In an appendix, we investigate multiplicativity properties of Schrijver's and Szegedy's numbers, as well as projective rank.
引用
收藏
页码:7330 / 7344
页数:15
相关论文
共 32 条
[1]   The Shannon capacity of a union [J].
Alon, N .
COMBINATORICA, 1998, 18 (03) :301-310
[2]  
Bacik R, 1995, LECT NOTES COMPUT SC, V959, P566, DOI 10.1007/BFb0030878
[3]   Entanglement-assisted zero-error capacity is upper-bounded by the Lovasz theta function [J].
Beigi, Salman .
PHYSICAL REVIEW A, 2010, 82 (01)
[4]   Gap, cosum and product properties of the ' bound on the clique number [J].
Bomze, I. M. ;
Frommlet, F. ;
Locatelli, M. .
OPTIMIZATION, 2010, 59 (07) :1041-1051
[5]  
BRIET J, 2013, ZERO ERROR SOURCE CH
[6]   Improving Zero-Error Classical Communication with Entanglement [J].
Cubitt, Toby S. ;
Leung, Debbie ;
Matthews, William ;
Winter, Andreas .
PHYSICAL REVIEW LETTERS, 2010, 104 (23)
[7]  
de Carli Silva M. K., 2013, ELECTRON J COMB, V20, pP43
[8]   Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovasz Number [J].
Duan, Runyao ;
Severini, Simone ;
Winter, Andreas .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) :1164-1174
[9]  
Feige U., 1992, Proceedings of the Twenty-Fourth Annual ACM Symposium on the Theory of Computing, P733, DOI 10.1145/129712.129783
[10]   Spectral characterizations of the Lovasz number and the Delsarte number of a graph [J].
Galtman, A .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 12 (02) :131-143