Convection-driven generation of long-range material gradients

被引:61
作者
Du, Yanan [1 ,2 ]
Hancock, Matthew J. [1 ,2 ]
He, Jiankang [1 ,2 ,3 ]
Villa-Uribe, Jose L. [1 ,2 ]
Wang, Ben [1 ,2 ]
Cropek, Donald M. [4 ]
Khademhosseini, Ali [1 ,2 ]
机构
[1] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Med,Ctr Biomed Engn, Cambridge, MA 02139 USA
[2] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
[4] USA, Corps Engineers, Construct Engn Res Lab, Champaign, IL 61822 USA
基金
美国国家科学基金会;
关键词
Anisotropic materials; Composite materials; Microfluidics; Gradients; FLUORESCENCE RECOVERY; LAMINAR DISPERSION; HYALURONIC-ACID; SELF-DIFFUSION; CELL; CHEMOTAXIS; SCAFFOLDS;
D O I
10.1016/j.biomaterials.2009.12.012
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Natural materials exhibit anisotropy with variations in soluble factors, cell distribution, and matrix properties The ability to recreate the heterogeneity of the natural materials is a major challenge for investigating cell-material interactions and for developing biomimetic: materials Here we present a generic fluidic approach using convection and alternating flow to rapidly generate multi-centimeter gradients of biomolecules, polymers, beads and cells and cross-gradients of two species in a microchannel. Accompanying theoretical estimates and simulations of gradient growth provide design criteria over a range of material properties A poly(ethylene-glycol) hydrogel gradient. a Porous collagen gradient and a composite material with a hyaluronic acid/gelatin cross-gradient were generated with continuous variations in material properties and in their ability to regulate cellular response This simple yet generic fluidic platform should prove useful for creating anisotropic biomimetic materials and high-throughput platforms for investigating cell-microenvironment interactions (C) 2009 Elsevier Ltd All rights reserved.
引用
收藏
页码:2686 / 2694
页数:9
相关论文
共 35 条
  • [1] Acheson D. J., 1990, ELEMENTARY FLUID DYN, DOI [10.1121/1.400751, DOI 10.1121/1.400751]
  • [2] Hydrodynamic dispersion in shallow mirochannels: the effect of cross-sectional shape
    Ajdari, A
    Bontoux, N
    Stone, HA
    [J]. ANALYTICAL CHEMISTRY, 2006, 78 (02) : 387 - 392
  • [4] Benton JA, 2009, TISSUE ENG PT A, V15, P3221, DOI [10.1089/ten.tea.2008.0545, 10.1089/ten.TEA.2008.0545]
  • [5] Mechanically Robust and Bioadhesive Collagen and Photocrosslinkable Hyaluronic Acid Semi-Interpenetrating Networks
    Brigham, Mark D.
    Bick, Alexander
    Lo, Edward
    Bendali, Amel
    Burdick, Jason A.
    Khademhosseini, Ali
    [J]. TISSUE ENGINEERING PART A, 2009, 15 (07) : 1645 - 1653
  • [6] DIFFUSION OF DEXTRAN IN AQUEOUS (HYDROXYPROPYL)CELLULOSE
    BU, Z
    RUSSO, PS
    [J]. MACROMOLECULES, 1994, 27 (05) : 1187 - 1194
  • [7] DYNAMIC VISCOUS RESUSPENSION
    CHAPMAN, BK
    LEIGHTON, DT
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1991, 17 (04) : 469 - 483
  • [8] THE EFFECT OF ASPECT RATIO ON LONGITUDINAL DIFFUSIVITY IN RECTANGULAR CHANNELS
    CHATWIN, PC
    SULLIVAN, PJ
    [J]. JOURNAL OF FLUID MECHANICS, 1982, 120 (JUL) : 347 - 358
  • [9] Human neural stem cell growth and differentiation in a gradient-generating microfluidic device
    Chung, BG
    Flanagan, LA
    Rhee, SW
    Schwartz, PH
    Lee, AP
    Monuki, ES
    Jeon, NL
    [J]. LAB ON A CHIP, 2005, 5 (04) : 401 - 406
  • [10] Characterizing dispersion in microfluidic channels
    Datta, Subhra
    Ghosal, Sandip
    [J]. LAB ON A CHIP, 2009, 9 (17) : 2537 - 2550