DEPENDENCE OF INNER ACCRETION DISK STRESS ON PARAMETERS: THE SCHWARZSCHILD CASE

被引:162
作者
Noble, Scott C. [1 ]
Krolik, Julian H. [2 ]
Hawley, John F. [3 ]
机构
[1] Rochester Inst Technol, Sch Math Sci, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA
[2] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[3] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA
基金
美国国家科学基金会;
关键词
accretion; accretion disks; black hole physics; magnetohydrodynamics (MHD); radiative transfer; MARGINALLY STABLE ORBIT; BLACK-HOLE; MHD SIMULATION; FLOWS; INSTABILITY; EFFICIENCY; TURBULENCE; TRANSPORT; EVOLUTION; RADIATION;
D O I
10.1088/0004-637X/711/2/959
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explore the parameter dependence of inner disk stress in black hole accretion by contrasting the results of a number of simulations, all employing three-dimensional general relativistic MHD in a Schwarzschild spacetime. Five of these simulations were performed with the intrinsically conservative code HARM3D, which allows careful regulation of the disk aspect ratio, H/R; our simulations span a range in H/R from 0.06 to 0.17. We contrast these simulations with two previously reported simulations in a Schwarzschild spacetime in order to investigate possible dependence of the inner disk stress on magnetic topology. In all cases, much care was devoted to technical issues: ensuring adequate resolution and azimuthal extent, and averaging only over those time periods when the accretion flow is in approximate inflow equilibrium. We find that the time-averaged radial dependence of fluid-frame electromagnetic stress is almost completely independent of both disk thickness and poloidal magnetic topology. It rises smoothly inward at all radii ( exhibiting no feature associated with the innermost stable circular orbit, ISCO) until just outside the event horizon, where the stress plummets to zero. Reynolds stress can also be significant near the ISCO and in the plunging region; the magnitude of this stress, however, depends on both disk thickness and magnetic topology. The two stresses combine to make the net angular momentum accreted per unit rest mass 7%-15% less than the angular momentum of the ISCO.
引用
收藏
页码:959 / 973
页数:15
相关论文
共 37 条
[1]   Accretion disks around Kerr black holes: Vertical equilibrium revisited [J].
Abramowicz, MA ;
Lanza, A ;
Percival, MJ .
ASTROPHYSICAL JOURNAL, 1997, 479 (01) :179-183
[2]   Geometrically thin disk accreting into a black hole [J].
Afshordi, N ;
Paczynski, B .
ASTROPHYSICAL JOURNAL, 2003, 592 (01) :354-367
[3]   Magnetic stress at the marginally stable orbit: Altered disk structure, radiation, and black hole spin evolution [J].
Agol, E ;
Krolik, JH .
ASTROPHYSICAL JOURNAL, 2000, 528 (01) :161-170
[4]  
[Anonymous], 1999, Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment
[5]   Instability, turbulence, and enhanced transport in accretion disks [J].
Balbus, SA ;
Hawley, JF .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :1-53
[6]   A POWERFUL LOCAL SHEAR INSTABILITY IN WEAKLY MAGNETIZED DISKS .1. LINEAR-ANALYSIS [J].
BALBUS, SA ;
HAWLEY, JF .
ASTROPHYSICAL JOURNAL, 1991, 376 (01) :214-222
[7]   Where is the radiation edge in magnetized black hole accretion discs? [J].
Beckwith, Kris ;
Hawley, John F. ;
Krolik, Julian H. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 390 (01) :21-38
[8]   The influence of magnetic field geometry on the evolution of black hole accretion flows: Similar disks, drastically different jets [J].
Beckwith, Kris ;
Hawley, John F. ;
Krolik, Julian H. .
ASTROPHYSICAL JOURNAL, 2008, 678 (02) :1180-1199
[9]   TRANSPORT OF LARGE-SCALE POLOIDAL FLUX IN BLACK HOLE ACCRETION [J].
Beckwith, Kris ;
Hawley, John F. ;
Krolik, Julian H. .
ASTROPHYSICAL JOURNAL, 2009, 707 (01) :428-445
[10]  
DAVIS SW, 2009, ARXIV09091570