A Displacement Discontinuity Method of High-Order Accuracy in Fracture Mechanics

被引:4
|
作者
Zvyagin, A. V. [1 ,2 ]
Udalov, A. S. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Wave & Gas Dynam, Moscow, Russia
[2] Russian Acad Sci, Mech Engn Res Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
fracture mechanics; cracks; stress intensity factors; displacement discontinuity method;
D O I
10.3103/S0027133020060060
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper the displacement discontinuity method of high-order accuracy and its application to the problems of fracture mechanics are considered. In common practice of applications of boundary element methods, the methods with the piecewise-constant function of boundary displacement are often used. Their advantage against other algorithms is the simplicity of calculation scheme with a rather good accuracy of the solution at the points of region distant from the boundary. In the fracture mechanics (with lines of surfaces of discontinuity of the displacement field), it is required to describe the stress behavior in the proximity of the crack edges with the highest accuracy possible, which leads to necessity of increasing the degree of accuracy of the used numerical methods. It is shown that the methods with high-order continuity of displacements at the boundary proposed in this work substantially improve the accuracy of computation of displacement and stress fields in the neighborhood of crack edges within the region.
引用
收藏
页码:153 / 159
页数:7
相关论文
共 50 条
  • [21] Bohmian mechanics to high-order harmonic generation
    赖炫扬
    蔡庆宇
    詹明生
    Chinese Physics B, 2010, 19 (02) : 28 - 32
  • [22] Bohmian mechanics to high-order harmonic generation
    Lai Xuan-Yang
    Cai Qing-Yu
    Zhan Ming-Sheng
    CHINESE PHYSICS B, 2010, 19 (02)
  • [23] A new high-order immersed interface method for solving elliptic equations with imbedded interface of discontinuity
    Zhong, Xialin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (01) : 1066 - 1099
  • [24] Use of discontinuity factors in high-order finite element methods
    Vidal-Ferrandiz, A.
    Gonzalez-Pintor, S.
    Ginestar, D.
    Verdu, G.
    Asadzadeh, M.
    Demaziere, C.
    ANNALS OF NUCLEAR ENERGY, 2016, 87 : 728 - 738
  • [25] METHOD OF DISPLACEMENT DISCONTINUITY FOR PROPAGATION OF HYDRAULIC FRACTURE IN A POROUS MEDIUM.
    Chiou, Yaw-Jeng
    Chung-kuo Kung Ch'eng Hsueh K'an/Journal of the Chinese Institute of Engineers, 1988, 11 (01): : 1 - 10
  • [26] Accuracy preserving limiter for the high-order finite volume method on unstructured grids
    Liu, Yilang
    Zhang, Weiwei
    COMPUTERS & FLUIDS, 2017, 149 : 88 - 99
  • [27] A novel numerical method of high-order accuracy for flow in unsaturated porous media
    Zambra, C. E.
    Dumbser, M.
    Toro, E. F.
    Moraga, N. O.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (02) : 227 - 240
  • [28] An accuracy preserving limiter for the high-order discontinuous Galerkin method on unstructured grids
    Liu, Yilang
    Zhang, Weiwei
    Zheng, Xiaobo
    COMPUTERS & FLUIDS, 2019, 192
  • [29] Compact difference schemes of high-order accuracy
    Kutniv M.V.
    Makarov V.L.
    Journal of Mathematical Sciences, 2012, 183 (1) : 29 - 42