Acyclic orientation polynomials and the sink theorem for chromatic symmetric functions

被引:3
作者
Hwang, Byung-Hak [1 ]
Jung, Woo-Seok [2 ]
Lee, Kang-Ju [3 ]
Oh, Jaeseong [3 ]
Yu, Sang-Hoon [3 ]
机构
[1] Sungkyunkwan Univ, Appl Algebra & Optimizat Res Ctr, Suwon, South Korea
[2] Sogang Univ, Dept Math, Seoul, South Korea
[3] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Acyclic orientations; The generating function for sinks; Deletion-contraction recursion; The sink theorem; Chromatic symmetric functions;
D O I
10.1016/j.jctb.2021.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the acyclic orientation polynomial of a graph to be the generating function for the sinks of its acyclic orientations. Stanley proved that the number of acyclic orientations is equal to the chromatic polynomial evaluated at -1 up to sign. Motivated by this link between acyclic orientations and the chromatic polynomial, we develop "acyclic orientation" analogues of theorems concerning the chromatic polynomial of Birkhoff, Whitney, and Greene-Zaslavsky. As an application, we provide a new proof for Stanley's sink theorem for chromatic symmetric functions X-G. This theorem gives a relation between the number of acyclic orientations with a fixed number of sinks and the coefficients in the expansion of X-G with respect to elementary symmetric functions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:52 / 75
页数:24
相关论文
共 18 条
[1]  
[Anonymous], 1932, B AM MATH SOC, DOI 10.1090/s0002-9904-1932-05460-x
[2]  
[Anonymous], 1999, Cambridge Studies in Advanced Mathematics
[3]  
[Anonymous], 1964, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, DOI DOI 10.1007/BF00531932
[4]   Combinatorial reciprocity for the chromatic polynomial and the chromatic symmetric function [J].
Bernardi, Olivier ;
Nadeau, Philippe .
DISCRETE MATHEMATICS, 2020, 343 (10)
[5]  
Birkhoff G.D., 1912, Ann. Math., V2, P42, DOI DOI 10.2307/1967597
[6]   BIJECTIVE PROOFS OF 2 BROKEN CIRCUIT THEOREMS [J].
BLASS, A ;
SAGAN, BE .
JOURNAL OF GRAPH THEORY, 1986, 10 (01) :15-21
[7]   Non-isomorphic caterpillars with identical subtree data [J].
Eisenstat, David ;
Gordon, Gary .
DISCRETE MATHEMATICS, 2006, 306 (8-9) :827-830
[8]   The Tutte-Potts connection in the presence of an external magnetic field [J].
Ellis-Monaghan, Joanna A. ;
Moffatt, Iain .
ADVANCES IN APPLIED MATHEMATICS, 2011, 47 (04) :772-782
[9]   Sinks in acyclic orientations of graphs [J].
Gebhard, DD ;
Sagan, BE .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 80 (01) :130-146
[10]   A chromatic symmetric function in noncommuting variables [J].
Gebhard, DD ;
Sagan, BE .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 13 (03) :227-255