Dendrite Growth in Mg Metal Cells Containing Mg(TFSI)2/Glyme Electrolytes

被引:152
作者
Ding, Markus S. [1 ,2 ]
Diemant, Thomas [3 ]
Behm, R. Juergen [1 ,3 ]
Passerini, Stefano [1 ,2 ]
Giffin, Guinevere A. [1 ,2 ,4 ]
机构
[1] Helmholtz Inst Ulm, D-89081 Ulm, Germany
[2] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[3] Ulm Univ, Inst Surface Chem & Catalysis, D-89069 Ulm, Germany
[4] Fraunhofer Inst Silicatforsch, D-97082 Wurzburg, Germany
关键词
STABLE LITHIUM ELECTRODEPOSITION; MAGNESIUM BOROHYDRIDE; IONIC LIQUID; ELECTROCHEMISTRY; BATTERIES; CATION; SALT;
D O I
10.1149/2.1471809jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
One advantage of Mg batteries, which is often reported in the literature without further qualification such as the electrolyte system, is the high safety due to dendrite-free Mg deposition. Here we report results of a study on the possibility for dendrite growth in Mg metal cells using Mg(TFSI)(2)/glyme electrolytes. Dendrite growth and the subsequent internal short-circuit were proven electrochemically via cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and galvanostatic cycling. In addition, the structure and chemical composition of the globular dendrites were investigated by scanning electrode microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and in situ optical microscopy. The dendrites are structured in interconnected spherical deposits consisting of Mg metal, MgO, MgF2, and MgS. The results demonstrate the necessity of considering dendrite growth when developing new electrolyte systems for Mg metal batteries. (C) 2018 The Electrochemical Society.
引用
收藏
页码:A1983 / A1990
页数:8
相关论文
共 34 条
[1]   Prototype systems for rechargeable magnesium batteries [J].
Aurbach, D ;
Lu, Z ;
Schechter, A ;
Gofer, Y ;
Gizbar, H ;
Turgeman, R ;
Cohen, Y ;
Moshkovich, M ;
Levi, E .
NATURE, 2000, 407 (6805) :724-727
[2]   Nonaqueous magnesium electrochemistry and its application in secondary batteries [J].
Aurbach, D ;
Weissman, I ;
Gofer, Y ;
Levi, E .
CHEMICAL RECORD, 2003, 3 (01) :61-73
[3]   Confession of a Magnesium Battery [J].
Bucur, Claudiu B. ;
Gregory, Thomas ;
Oliver, Allen G. ;
Muldoon, John .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (18) :3578-3591
[4]   Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities [J].
Choudhury, Snehashis ;
Archer, Lynden A. .
ADVANCED ELECTRONIC MATERIALS, 2016, 2 (02)
[5]   The Effect of 1-Pentylamine as Solid Electrolyte Interphase Precursor on Lithium Metal Anodes [J].
Ding, Markus S. ;
Koch, Stephan L. ;
Passerini, Stefano .
ELECTROCHIMICA ACTA, 2017, 240 :408-414
[6]   Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries [J].
Ha, Se-Young ;
Lee, Yong-Won ;
Woo, Sang Won ;
Koo, Bonjae ;
Kim, Jeom-Soo ;
Cho, Jaephil ;
Lee, Kyu Tae ;
Choi, Nam-Soon .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (06) :4063-4073
[7]  
Hebie S., 2018, ACS APPL MAT INTERFA
[8]   Electrolyte Based on Easily Synthesized, Low Cost Triphenolate-Borohydride Salt for High Performance Mg(TFSI)2-Glyme Rechargeable Magnesium Batteries [J].
Hebie, Seydou ;
Ngo, Hoang Phuong Khanh ;
Lepretre, Jean-Claude ;
Iojoiu, Cristina ;
Cointeaux, Laure ;
Berthelot, Romain ;
Alloin, Fannie .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (34) :28377-28385
[9]   XPS ANALYSIS OF A LITHIUM SURFACE IMMERSED IN PROPYLENE CARBONATE SOLUTION CONTAINING VARIOUS SALTS [J].
KANAMURA, K ;
TAMURA, H ;
TAKEHARA, Z .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 333 (1-2) :127-142
[10]   Room Temperature Magnesium Electrodeposition from Glyme-Coordinated Ammonium Amide Electrolytes [J].
Kitada, Atsushi ;
Kang, Yuu ;
Matsumoto, Kazuhiko ;
Fukami, Kazuhiro ;
Hagiwara, Rika ;
Murase, Kuniaki .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (08) :D389-D396