Comparative analysis between the maxent and the weighted least square shape functions in a collocation meshless method

被引:0
作者
Perazzo, F. [1 ,3 ]
Marchant, F. [2 ,3 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Ingn Mecan, Ave Espana 1680, Valparaiso, Chile
[2] Univ Gabriela Mistral, Fac Negocios Ingn & Artes Digitales IEIE, Ricardo Lyon 1177, Providencia, Chile
[3] Univ Tecn Federico Santa Maria, Aula DIMEC CIMNE, Ave Espana 1680, Valparaiso, Chile
来源
REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA | 2017年 / 33卷 / 3-4期
关键词
Shape function; Maximum entropy principle; Collocation; Meshless; INFORMATION-THEORY; MESHFREE METHOD; APPROXIMATION; CONSTRUCTION; INTEGRATION; 2ND-ORDER; SCHEMES;
D O I
10.1016/j.rimni.2016.07.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article the behavior of a shape function based on the maximum entropy principle (maxent) is analyzed in a meshless collocation method, compared with a traditional fixed weighted least square shape function (FWLS). The maxent shape function used in this work has certain properties that are desired in a meshless collocation method, for example the positivity, the smooth and uniform aspect for different discretizations. Further, in the boundary, the approximation not depends of the shape function of the interior nodes, this property is know as a reduction of the shape function on the boundary. To compare this type of function, it was developed examples that include the solution of eliptical second order equations in 1D and 2D. The numerical results shown a better behavior of the maxent shape function compared with the FWLS, particularly in terms of the convergence and stability of the meshless collocations method that result. (C) 2016 CIMNE (Universitat Politecnica de Catalunya). Published by Elsevier Espana, S.L.U.
引用
收藏
页码:290 / 298
页数:9
相关论文
共 50 条
[41]   A regularized least-squares radial point collocation method (RLS-RPCM) for adaptive analysis [J].
Bernard B. T. Kee ;
G. R. Liu ;
C. Lu .
Computational Mechanics, 2007, 40 :837-853
[42]   A regularized least-squares radial point collocation method (RLS-RPCM) for adaptive analysis [J].
Kee, Bernard B. T. ;
Liu, G. R. ;
Lu, C. .
COMPUTATIONAL MECHANICS, 2007, 40 (05) :837-853
[43]   Bending and vibration analysis of an arbitrary shell by the moving-least square meshfree method [J].
Chen W. ;
Yang J. ;
Wei D. ;
Shen Y. ;
Peng L. .
Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (16) :125-134and241
[44]   Error analysis of the moving least square material point method for large deformation problems [J].
Ma, Huanhuan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 193 :315-331
[45]   NONLINEAR-ANALYSIS OF AXISYMMETRICAL DEFORMATION OF SHALLOW SPHERICAL-SHELLS BY LEAST-SQUARES COLLOCATION METHOD [J].
CHEN, XC ;
ZHENG, RF ;
WANG, JTS .
ENGINEERING STRUCTURES, 1994, 16 (06) :407-411
[46]   Analysis of a Gas Circuit Breaker Using the Fast Moving Least Square Reproducing Kernel Method [J].
Lee, Chany ;
Kim, Do Wan ;
Park, Sang-Hun ;
Kim, Hong-Kyu ;
Jung, Hyun-Kyo .
JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2009, 4 (02) :272-276
[47]   Analysis of a gas circuit breaker using the fast moving least square reproducing kernel method [J].
Lee, Chany ;
Kim, Do Wan ;
Park, Sang-Hun ;
Kim, Hong-Kyu ;
Jung, Hyun-Kyo .
Journal of Electrical Engineering and Technology, 2009, 4 (02) :272-276
[48]   Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein-Gordon-Schrodinger (KGS) equations [J].
Dehghan, Mehdi ;
Mohammadi, Vahid .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (04) :892-921
[49]   Synchronization between Outputs of Neurons and Neuron Populations with Discrete Control Algorithm Basing on Least-square Method [J].
Jia, Chenhui ;
Wang, Jiang ;
Deng, Bin ;
Wei, Xile ;
Dong, Feng ;
Che, Yanqiu .
PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, :5001-5006
[50]   Collocation method based on radial basis functions via symmetric variable shape parameter for solving a particular class of delay differential equations [J].
Giklou, Asadollah Torabi ;
Ranjbar, Mojtaba ;
Shafiee, Mahmoud ;
Roomi, Vahid .
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2022, 10 (01) :144-157